Browse Source

Update README.md

Kentaro Wada 6 years ago
parent
commit
4d4d26ef04

BIN
examples/instance_segmentation/.readme/draw_label_png_class.jpg


BIN
examples/instance_segmentation/.readme/draw_label_png_object.jpg


+ 4 - 3
examples/instance_segmentation/README.md

@@ -24,12 +24,13 @@ labelme data_annotated --labels labels.txt --nodata
 Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)
 Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)
 
 
 
 
-Note that the reason why the label file is mostly black is it contains only very low label values (ex. `-1, 0, 4, 14`).  
+Note that the reason why the label file is mostly black is it contains only very low label values (ex. `0, 4, 14`), and
+`255` indicates the `__ignore__` label value (`-1` in the npy file).  
 You can see the label PNG file by following.
 You can see the label PNG file by following.
 
 
 ```bash
 ```bash
-labelme_draw_label_png data_dataset_voc/SegmentationClass/2011_000003.png   # left
-labelme_draw_label_png data_dataset_voc/SegmentationObject/2011_000003.png  # right
+labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
+labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right
 ```
 ```
 
 
 <img src=".readme/draw_label_png_class.jpg" width="33%" /> <img src=".readme/draw_label_png_object.jpg" width="33%" />
 <img src=".readme/draw_label_png_class.jpg" width="33%" /> <img src=".readme/draw_label_png_object.jpg" width="33%" />

BIN
examples/semantic_segmentation/.readme/draw_label_png.jpg


+ 3 - 2
examples/semantic_segmentation/README.md

@@ -24,11 +24,12 @@ labelme data_annotated --labels labels.txt --nodata
 Fig 1. JPEG image (left), PNG label (center), JPEG label visualization (right)  
 Fig 1. JPEG image (left), PNG label (center), JPEG label visualization (right)  
 
 
 
 
-Note that the reason why the label file is mostly black is it contains only very low label values (ex. `-1, 0, 4, 14`).  
+Note that the reason why the label file is mostly black is it contains only very low label values (ex. `0, 4, 14`), and
+`255` indicates the `__ignore__` label value (`-1` in the npy file).  
 You can see the label PNG file by following.
 You can see the label PNG file by following.
 
 
 ```bash
 ```bash
-labelme_draw_label_png data_dataset_voc/SegmentationClass/2011_000003.png
+labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png
 ```
 ```
 
 
 <img src=".readme/draw_label_png.jpg" width="33%" />
 <img src=".readme/draw_label_png.jpg" width="33%" />

+ 0 - 3
labelme/cli/draw_label_png.py

@@ -18,9 +18,6 @@ def main():
     args = parser.parse_args()
     args = parser.parse_args()
 
 
     lbl = np.asarray(PIL.Image.open(args.label_png))
     lbl = np.asarray(PIL.Image.open(args.label_png))
-    if lbl.dtype != np.int32:
-        logger.warn('We recomment numpy.int32 for the label, but it has: {}'
-                    .format(lbl.dtype))
 
 
     logger.info('label shape: {}'.format(lbl.shape))
     logger.info('label shape: {}'.format(lbl.shape))
     logger.info('unique label values: {}'.format(np.unique(lbl)))
     logger.info('unique label values: {}'.format(np.unique(lbl)))