|
@@ -1,114 +0,0 @@
|
|
|
-import json
|
|
|
-import os.path as osp
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-import PIL.Image
|
|
|
-
|
|
|
-import labelme
|
|
|
-
|
|
|
-
|
|
|
-here = osp.dirname(osp.abspath(__file__))
|
|
|
-data_dir = osp.join(here, 'data')
|
|
|
-
|
|
|
-
|
|
|
-def _get_img_and_data():
|
|
|
- json_file = osp.join(data_dir, 'apc2016_obj3.json')
|
|
|
- data = json.load(open(json_file))
|
|
|
- img_b64 = data['imageData']
|
|
|
- img = labelme.utils.img_b64_to_arr(img_b64)
|
|
|
- return img, data
|
|
|
-
|
|
|
-
|
|
|
-def _get_img_and_lbl():
|
|
|
- img, data = _get_img_and_data()
|
|
|
-
|
|
|
- label_name_to_value = {'__background__': 0}
|
|
|
- for shape in data['shapes']:
|
|
|
- label_name = shape['label']
|
|
|
- label_value = len(label_name_to_value)
|
|
|
- label_name_to_value[label_name] = label_value
|
|
|
-
|
|
|
- n_labels = max(label_name_to_value.values()) + 1
|
|
|
- label_names = [None] * n_labels
|
|
|
- for label_name, label_value in label_name_to_value.items():
|
|
|
- label_names[label_value] = label_name
|
|
|
-
|
|
|
- lbl = labelme.utils.shapes_to_label(
|
|
|
- img.shape, data['shapes'], label_name_to_value)
|
|
|
- return img, lbl, label_names
|
|
|
-
|
|
|
-
|
|
|
-# -----------------------------------------------------------------------------
|
|
|
-
|
|
|
-
|
|
|
-def test_img_b64_to_arr():
|
|
|
- img, _ = _get_img_and_data()
|
|
|
- assert img.dtype == np.uint8
|
|
|
- assert img.shape == (907, 1210, 3)
|
|
|
-
|
|
|
-
|
|
|
-def test_img_arr_to_b64():
|
|
|
- img_file = osp.join(data_dir, 'apc2016_obj3.jpg')
|
|
|
- img_arr = np.asarray(PIL.Image.open(img_file))
|
|
|
- img_b64 = labelme.utils.img_arr_to_b64(img_arr)
|
|
|
- img_arr2 = labelme.utils.img_b64_to_arr(img_b64)
|
|
|
- np.testing.assert_allclose(img_arr, img_arr2)
|
|
|
-
|
|
|
-
|
|
|
-def test_shapes_to_label():
|
|
|
- img, data = _get_img_and_data()
|
|
|
- label_name_to_value = {}
|
|
|
- for shape in data['shapes']:
|
|
|
- label_name = shape['label']
|
|
|
- label_value = len(label_name_to_value)
|
|
|
- label_name_to_value[label_name] = label_value
|
|
|
- cls = labelme.utils.shapes_to_label(
|
|
|
- img.shape, data['shapes'], label_name_to_value)
|
|
|
- assert cls.shape == img.shape[:2]
|
|
|
-
|
|
|
-
|
|
|
-def test_shape_to_mask():
|
|
|
- img, data = _get_img_and_data()
|
|
|
- for shape in data['shapes']:
|
|
|
- points = shape['points']
|
|
|
- mask = labelme.utils.shape_to_mask(img.shape[:2], points)
|
|
|
- assert mask.shape == img.shape[:2]
|
|
|
-
|
|
|
-
|
|
|
-def test_label_colormap():
|
|
|
- N = 255
|
|
|
- colormap = labelme.utils.label_colormap(N=N)
|
|
|
- assert colormap.shape == (N, 3)
|
|
|
-
|
|
|
-
|
|
|
-def test_label2rgb():
|
|
|
- img, lbl, label_names = _get_img_and_lbl()
|
|
|
- n_labels = len(label_names)
|
|
|
-
|
|
|
- viz = labelme.utils.label2rgb(lbl=lbl, n_labels=n_labels)
|
|
|
- assert lbl.shape == viz.shape[:2]
|
|
|
- assert viz.dtype == np.uint8
|
|
|
-
|
|
|
- viz = labelme.utils.label2rgb(lbl=lbl, img=img, n_labels=n_labels)
|
|
|
- assert img.shape[:2] == lbl.shape == viz.shape[:2]
|
|
|
- assert viz.dtype == np.uint8
|
|
|
-
|
|
|
-
|
|
|
-def test_draw_label():
|
|
|
- img, lbl, label_names = _get_img_and_lbl()
|
|
|
-
|
|
|
- viz = labelme.utils.draw_label(lbl, img, label_names=label_names)
|
|
|
- assert viz.shape[:2] == img.shape[:2] == lbl.shape[:2]
|
|
|
- assert viz.dtype == np.uint8
|
|
|
-
|
|
|
-
|
|
|
-def test_draw_instances():
|
|
|
- img, lbl, label_names = _get_img_and_lbl()
|
|
|
- labels_and_masks = {l: lbl == l for l in np.unique(lbl) if l != 0}
|
|
|
- labels, masks = zip(*labels_and_masks.items())
|
|
|
- masks = np.asarray(masks)
|
|
|
- bboxes = labelme.utils.masks_to_bboxes(masks)
|
|
|
- captions = [label_names[l] for l in labels]
|
|
|
- viz = labelme.utils.draw_instances(img, bboxes, labels, captions=captions)
|
|
|
- assert viz.shape[:2] == img.shape[:2]
|
|
|
- assert viz.dtype == np.uint8
|