|
@@ -1,157 +0,0 @@
|
|
-import io
|
|
|
|
-import os.path as osp
|
|
|
|
-
|
|
|
|
-import numpy as np
|
|
|
|
-import PIL.Image
|
|
|
|
-import PIL.ImageDraw
|
|
|
|
-import PIL.ImageFont
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def label_colormap(N=256):
|
|
|
|
-
|
|
|
|
- def bitget(byteval, idx):
|
|
|
|
- return ((byteval & (1 << idx)) != 0)
|
|
|
|
-
|
|
|
|
- cmap = np.zeros((N, 3))
|
|
|
|
- for i in range(0, N):
|
|
|
|
- id = i
|
|
|
|
- r, g, b = 0, 0, 0
|
|
|
|
- for j in range(0, 8):
|
|
|
|
- r = np.bitwise_or(r, (bitget(id, 0) << 7 - j))
|
|
|
|
- g = np.bitwise_or(g, (bitget(id, 1) << 7 - j))
|
|
|
|
- b = np.bitwise_or(b, (bitget(id, 2) << 7 - j))
|
|
|
|
- id = (id >> 3)
|
|
|
|
- cmap[i, 0] = r
|
|
|
|
- cmap[i, 1] = g
|
|
|
|
- cmap[i, 2] = b
|
|
|
|
- cmap = cmap.astype(np.float32) / 255
|
|
|
|
- return cmap
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def _validate_colormap(colormap, n_labels):
|
|
|
|
- if colormap is None:
|
|
|
|
- colormap = label_colormap(n_labels)
|
|
|
|
- else:
|
|
|
|
- assert colormap.shape == (colormap.shape[0], 3), \
|
|
|
|
- 'colormap must be sequence of RGB values'
|
|
|
|
- assert 0 <= colormap.min() and colormap.max() <= 1, \
|
|
|
|
- 'colormap must ranges 0 to 1'
|
|
|
|
- return colormap
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-# similar function as skimage.color.label2rgb
|
|
|
|
-def label2rgb(
|
|
|
|
- lbl, img=None, n_labels=None, alpha=0.5, thresh_suppress=0, colormap=None,
|
|
|
|
-):
|
|
|
|
- if n_labels is None:
|
|
|
|
- n_labels = len(np.unique(lbl))
|
|
|
|
-
|
|
|
|
- colormap = _validate_colormap(colormap, n_labels)
|
|
|
|
- colormap = (colormap * 255).astype(np.uint8)
|
|
|
|
-
|
|
|
|
- lbl_viz = colormap[lbl]
|
|
|
|
- lbl_viz[lbl == -1] = (0, 0, 0) # unlabeled
|
|
|
|
-
|
|
|
|
- if img is not None:
|
|
|
|
- img_gray = PIL.Image.fromarray(img).convert('LA')
|
|
|
|
- img_gray = np.asarray(img_gray.convert('RGB'))
|
|
|
|
- # img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
|
|
|
- # img_gray = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
|
|
|
|
- lbl_viz = alpha * lbl_viz + (1 - alpha) * img_gray
|
|
|
|
- lbl_viz = lbl_viz.astype(np.uint8)
|
|
|
|
-
|
|
|
|
- return lbl_viz
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def draw_label(label, img=None, label_names=None, colormap=None, **kwargs):
|
|
|
|
- """Draw pixel-wise label with colorization and label names.
|
|
|
|
-
|
|
|
|
- label: ndarray, (H, W)
|
|
|
|
- Pixel-wise labels to colorize.
|
|
|
|
- img: ndarray, (H, W, 3), optional
|
|
|
|
- Image on which the colorized label will be drawn.
|
|
|
|
- label_names: iterable
|
|
|
|
- List of label names.
|
|
|
|
- """
|
|
|
|
- import matplotlib.pyplot as plt
|
|
|
|
-
|
|
|
|
- backend_org = plt.rcParams['backend']
|
|
|
|
- plt.switch_backend('agg')
|
|
|
|
-
|
|
|
|
- plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
|
|
|
|
- wspace=0, hspace=0)
|
|
|
|
- plt.margins(0, 0)
|
|
|
|
- plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
|
|
|
- plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
|
|
|
-
|
|
|
|
- if label_names is None:
|
|
|
|
- label_names = [str(l) for l in range(label.max() + 1)]
|
|
|
|
-
|
|
|
|
- colormap = _validate_colormap(colormap, len(label_names))
|
|
|
|
-
|
|
|
|
- label_viz = label2rgb(
|
|
|
|
- label, img, n_labels=len(label_names), colormap=colormap, **kwargs
|
|
|
|
- )
|
|
|
|
- plt.imshow(label_viz)
|
|
|
|
- plt.axis('off')
|
|
|
|
-
|
|
|
|
- plt_handlers = []
|
|
|
|
- plt_titles = []
|
|
|
|
- for label_value, label_name in enumerate(label_names):
|
|
|
|
- if label_value not in label:
|
|
|
|
- continue
|
|
|
|
- fc = colormap[label_value]
|
|
|
|
- p = plt.Rectangle((0, 0), 1, 1, fc=fc)
|
|
|
|
- plt_handlers.append(p)
|
|
|
|
- plt_titles.append('{value}: {name}'
|
|
|
|
- .format(value=label_value, name=label_name))
|
|
|
|
- plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)
|
|
|
|
-
|
|
|
|
- f = io.BytesIO()
|
|
|
|
- plt.savefig(f, bbox_inches='tight', pad_inches=0)
|
|
|
|
- plt.cla()
|
|
|
|
- plt.close()
|
|
|
|
-
|
|
|
|
- plt.switch_backend(backend_org)
|
|
|
|
-
|
|
|
|
- out_size = (label_viz.shape[1], label_viz.shape[0])
|
|
|
|
- out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB')
|
|
|
|
- out = np.asarray(out)
|
|
|
|
- return out
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def draw_instances(
|
|
|
|
- image=None,
|
|
|
|
- bboxes=None,
|
|
|
|
- labels=None,
|
|
|
|
- masks=None,
|
|
|
|
- captions=None,
|
|
|
|
-):
|
|
|
|
- import matplotlib
|
|
|
|
-
|
|
|
|
- # TODO(wkentaro)
|
|
|
|
- assert image is not None
|
|
|
|
- assert bboxes is not None
|
|
|
|
- assert labels is not None
|
|
|
|
- assert masks is None
|
|
|
|
- assert captions is not None
|
|
|
|
-
|
|
|
|
- viz = PIL.Image.fromarray(image)
|
|
|
|
- draw = PIL.ImageDraw.ImageDraw(viz)
|
|
|
|
-
|
|
|
|
- font_path = osp.join(
|
|
|
|
- osp.dirname(matplotlib.__file__),
|
|
|
|
- 'mpl-data/fonts/ttf/DejaVuSans.ttf'
|
|
|
|
- )
|
|
|
|
- font = PIL.ImageFont.truetype(font_path)
|
|
|
|
-
|
|
|
|
- colormap = label_colormap(255)
|
|
|
|
- for bbox, label, caption in zip(bboxes, labels, captions):
|
|
|
|
- color = colormap[label]
|
|
|
|
- color = tuple((color * 255).astype(np.uint8).tolist())
|
|
|
|
-
|
|
|
|
- xmin, ymin, xmax, ymax = bbox
|
|
|
|
- draw.rectangle((xmin, ymin, xmax, ymax), outline=color)
|
|
|
|
- draw.text((xmin, ymin), caption, font=font)
|
|
|
|
-
|
|
|
|
- return np.asarray(viz)
|
|
|