|
@@ -0,0 +1,94 @@
|
|
|
+import base64
|
|
|
+import cStringIO as StringIO
|
|
|
+
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+import numpy as np
|
|
|
+import PIL.Image
|
|
|
+import PIL.ImageDraw
|
|
|
+import skimage.color
|
|
|
+
|
|
|
+
|
|
|
+def labelcolormap(N=256):
|
|
|
+
|
|
|
+ def bitget(byteval, idx):
|
|
|
+ return ((byteval & (1 << idx)) != 0)
|
|
|
+
|
|
|
+ cmap = np.zeros((N, 3))
|
|
|
+ for i in xrange(0, N):
|
|
|
+ id = i
|
|
|
+ r, g, b = 0, 0, 0
|
|
|
+ for j in xrange(0, 8):
|
|
|
+ r = np.bitwise_or(r, (bitget(id, 0) << 7-j))
|
|
|
+ g = np.bitwise_or(g, (bitget(id, 1) << 7-j))
|
|
|
+ b = np.bitwise_or(b, (bitget(id, 2) << 7-j))
|
|
|
+ id = (id >> 3)
|
|
|
+ cmap[i, 0] = r
|
|
|
+ cmap[i, 1] = g
|
|
|
+ cmap[i, 2] = b
|
|
|
+ cmap = cmap.astype(np.float32) / 255
|
|
|
+ return cmap
|
|
|
+
|
|
|
+
|
|
|
+def img_b64_to_array(img_b64):
|
|
|
+ f = StringIO.StringIO()
|
|
|
+ f.write(base64.b64decode(img_b64))
|
|
|
+ img_arr = np.array(PIL.Image.open(f))
|
|
|
+ return img_arr
|
|
|
+
|
|
|
+
|
|
|
+def polygons_to_mask(img_shape, polygons):
|
|
|
+ mask = np.zeros(img_shape[:2], dtype=np.uint8)
|
|
|
+ mask = PIL.Image.fromarray(mask)
|
|
|
+ xy = map(tuple, polygons)
|
|
|
+ PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
|
|
|
+ mask = np.array(mask, dtype=bool)
|
|
|
+ return mask
|
|
|
+
|
|
|
+
|
|
|
+def draw_label(label, img, label_names):
|
|
|
+ plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
|
|
|
+ wspace=0, hspace=0)
|
|
|
+ plt.margins(0, 0)
|
|
|
+ plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
|
|
+ plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
|
|
+
|
|
|
+ cmap = labelcolormap(len(label_names))
|
|
|
+ label_viz = skimage.color.label2rgb(label, img, bg_label=0)
|
|
|
+ plt.imshow(label_viz)
|
|
|
+
|
|
|
+ plt_handlers = []
|
|
|
+ plt_titles = []
|
|
|
+ for label_value, label_name in enumerate(label_names):
|
|
|
+ fc = cmap[label_value]
|
|
|
+ p = plt.Rectangle((0, 0), 1, 1, fc=fc)
|
|
|
+ plt_handlers.append(p)
|
|
|
+ plt_titles.append(label_name)
|
|
|
+ plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)
|
|
|
+
|
|
|
+ f = StringIO.StringIO()
|
|
|
+ plt.savefig(f, bbox_inches='tight', pad_inches=0)
|
|
|
+ plt.cla()
|
|
|
+
|
|
|
+ img = np.array(PIL.Image.open(f))[:, :, :3]
|
|
|
+ return img
|
|
|
+
|
|
|
+
|
|
|
+def labelme_shapes_to_label(img_shape, shapes):
|
|
|
+ label_name_to_val = {'background': 0}
|
|
|
+ lbl = np.zeros(img_shape[:2], dtype=np.int32)
|
|
|
+ for shape in sorted(shapes, key=lambda x: x['label']):
|
|
|
+ polygons = shape['points']
|
|
|
+ label_name = shape['label']
|
|
|
+ if label_name in label_name_to_val:
|
|
|
+ label_value = label_name_to_val[label_name]
|
|
|
+ else:
|
|
|
+ label_value = len(label_name_to_val)
|
|
|
+ label_name_to_val[label_name] = label_value
|
|
|
+ mask = polygons_to_mask(img_shape[:2], polygons)
|
|
|
+ lbl[mask] = label_value
|
|
|
+
|
|
|
+ lbl_names = [None] * (max(label_name_to_val.values()) + 1)
|
|
|
+ for label_name, label_value in label_name_to_val.items():
|
|
|
+ lbl_names[label_value] = label_name
|
|
|
+
|
|
|
+ return lbl, lbl_names
|