# Tutorial (Single Image Example) ## Annotation ```bash labelme apc2016_obj3.jpg -O apc2016_obj3.json ``` ![](.readme/annotation.jpg) ## Visualization To view the json file quickly, you can use utility script: ```bash labelme_draw_json apc2016_obj3.json ``` ## Convert to Dataset To convert the json to set of image and label, you can run following: ```bash labelme_json_to_dataset apc2016_obj3.json -o apc2016_obj3_json ``` It generates standard files from the JSON file. - [img.png](apc2016_obj3_json/img.png): Image file. - [label.png](apc2016_obj3_json/label.png): Int32 label file. - [label_viz.png](apc2016_obj3_json/label_viz.png): Visualization of `label.png`. - [label_names.txt](apc2016_obj3_json/label_names.txt): Label names for values in `label.png`. Note that loading `label.png` is a bit difficult (`scipy.misc.imread`, `skimage.io.imread` may not work correctly), and please use `PIL.Image.open` to avoid unexpected behavior: ```python # see load_label_png.py also. >>> import numpy as np >>> import PIL.Image >>> label_png = 'apc2016_obj3_json/label.png' >>> lbl = np.asarray(PIL.Image.open(label_png)) >>> print(lbl.dtype) dtype('int32') >>> np.unique(lbl) array([0, 1, 2, 3], dtype=int32) >>> lbl.shape (907, 1210) ```