#!/usr/bin/env python from __future__ import print_function import argparse import glob import json import os import os.path as osp import numpy as np import PIL.Image import labelme def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('labels_file') parser.add_argument('in_dir') parser.add_argument('out_dir') args = parser.parse_args() if osp.exists(args.out_dir): print('Output directory already exists:', args.out_dir) quit(1) os.makedirs(args.out_dir) os.makedirs(osp.join(args.out_dir, 'JPEGImages')) os.makedirs(osp.join(args.out_dir, 'SegmentationClass')) os.makedirs(osp.join(args.out_dir, 'SegmentationClassPNG')) os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization')) os.makedirs(osp.join(args.out_dir, 'SegmentationObject')) os.makedirs(osp.join(args.out_dir, 'SegmentationObjectPNG')) os.makedirs(osp.join(args.out_dir, 'SegmentationObjectVisualization')) print('Creating dataset:', args.out_dir) class_names = [] class_name_to_id = {} for i, line in enumerate(open(args.labels_file).readlines()): class_id = i - 1 # starts with -1 class_name = line.strip() class_name_to_id[class_name] = class_id if class_id == -1: assert class_name == '__ignore__' continue elif class_id == 0: assert class_name == '_background_' class_names.append(class_name) class_names = tuple(class_names) print('class_names:', class_names) out_class_names_file = osp.join(args.out_dir, 'class_names.txt') with open(out_class_names_file, 'w') as f: f.writelines('\n'.join(class_names)) print('Saved class_names:', out_class_names_file) colormap = labelme.utils.label_colormap(255) for label_file in glob.glob(osp.join(args.in_dir, '*.json')): print('Generating dataset from:', label_file) with open(label_file) as f: base = osp.splitext(osp.basename(label_file))[0] out_img_file = osp.join( args.out_dir, 'JPEGImages', base + '.jpg') out_cls_file = osp.join( args.out_dir, 'SegmentationClass', base + '.npy') out_clsp_file = osp.join( args.out_dir, 'SegmentationClassPNG', base + '.png') out_clsv_file = osp.join( args.out_dir, 'SegmentationClassVisualization', base + '.jpg') out_ins_file = osp.join( args.out_dir, 'SegmentationObject', base + '.npy') out_insp_file = osp.join( args.out_dir, 'SegmentationObjectPNG', base + '.png') out_insv_file = osp.join( args.out_dir, 'SegmentationObjectVisualization', base + '.jpg') data = json.load(f) img_file = osp.join(osp.dirname(label_file), data['imagePath']) img = np.asarray(PIL.Image.open(img_file)) PIL.Image.fromarray(img).save(out_img_file) cls, ins = labelme.utils.shapes_to_label( img_shape=img.shape, shapes=data['shapes'], label_name_to_value=class_name_to_id, type='instance', ) ins[cls == -1] = 0 # ignore it. # class label # Assume class label ranses [-1, 254] for int32, # and [0, 255] for uint8 as VOC. if cls.min() >= -1 and cls.max() < 255: cls_pil = PIL.Image.fromarray(cls.astype(np.uint8), mode='P') cls_pil.putpalette((colormap * 255).astype(np.uint8).flatten()) cls_pil.save(out_clsp_file) else: labelme.logger.warn( '[%s] Cannot save the pixel-wise class label as PNG, ' 'so please use the npy file.' % label_file ) np.save(out_cls_file, cls) label_names = ['%d: %s' % (cls_id, cls_name) for cls_id, cls_name in enumerate(class_names)] clsv = labelme.utils.draw_label( cls, img, label_names, colormap=colormap) PIL.Image.fromarray(clsv).save(out_clsv_file) # instance label # Assume instance label ranses [-1, 254] for int32, # and [0, 255] for uint8 as VOC. if ins.min() >= -1 and ins.max() < 255: ins_pil = PIL.Image.fromarray(ins.astype(np.uint8), mode='P') ins_pil.putpalette((colormap * 255).astype(np.uint8).flatten()) ins_pil.save(out_insp_file) else: labelme.logger.warn( '[%s] Cannot save the pixel-wise instance label as PNG, ' 'so please use the npy file.' % label_file ) np.save(out_ins_file, ins) instance_ids = np.unique(ins) instance_names = [str(i) for i in range(max(instance_ids) + 1)] insv = labelme.utils.draw_label( ins, img, instance_names) PIL.Image.fromarray(insv).save(out_insv_file) if __name__ == '__main__': main()