# Semantic Segmentation Example ## Annotation ```bash labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}' ``` ![](.readme/annotation.jpg) labelme "/media/tricolops/New Volume/Merangue/" --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}' --model /home/tricolops/PaddleDetection/Exported_model/openvino_new_50/Detection.xml --segmentation_model /home/tricolops/PaddleSeg/output_bisenetv2/openvino_2023.1_segmentaion/segmentation.xml ## Convert to VOC-format Dataset ```bash # It generates: # - data_dataset_voc/JPEGImages # - data_dataset_voc/SegmentationClass # - data_dataset_voc/SegmentationClassNpy # - data_dataset_voc/SegmentationClassVisualization ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt --noobject ``` Fig 1. JPEG image (left), PNG label (center), JPEG label visualization (right) Note that the label file contains only very low label values (ex. `0, 4, 14`), and `255` indicates the `__ignore__` label value (`-1` in the npy file). You can see the label PNG file by following. ```bash labelme_draw_label_png data_dataset_voc/SegmentationClass/2011_000003.png ```