labelme

Image Polygonal Annotation with Python

Starter Bundle | Installation | Usage | Examples | 𝕏 (@labelmeai)

## Description Labelme is a graphical image annotation tool inspired by . It is written in Python and uses Qt for its graphical interface. VOC dataset example of instance segmentation. Other examples (semantic segmentation, bbox detection, and classification). Various primitives (polygon, rectangle, circle, line, and point). ## Features - [x] Image annotation for polygon, rectangle, circle, line and point. ([tutorial](examples/tutorial)) - [x] Image flag annotation for classification and cleaning. ([#166](https://github.com/wkentaro/labelme/pull/166)) - [x] Video annotation. ([video annotation](examples/video_annotation)) - [x] GUI customization (predefined labels / flags, auto-saving, label validation, etc). ([#144](https://github.com/wkentaro/labelme/pull/144)) - [x] Exporting VOC-format dataset for semantic/instance segmentation. ([semantic segmentation](examples/semantic_segmentation), [instance segmentation](examples/instance_segmentation)) - [x] Exporting COCO-format dataset for instance segmentation. ([instance segmentation](examples/instance_segmentation)) ## Starter Bundle If you're new to Labelme, you can get started with [Labelme Starter Bundle](https://labelme.gumroad.com/l/starter-bundle) (FREE), which contains: - **Installation guides** for all platforms: Windows, macOS, and Linux 💻 - **Step-by-step tutorials**: first annotation to editing, exporting, and integrating with other programs 📕 - **A compilation of valuable resources** for further exploration 🔗. ## Installation There are options: - Platform agnostic installation: [Anaconda](#anaconda) - Platform specific installation: [Ubuntu](#ubuntu), [macOS](#macos), [Windows](#windows) - Pre-build binaries from [the release section](https://github.com/wkentaro/labelme/releases) ### Anaconda You need install [Anaconda](https://www.continuum.io/downloads), then run below: ```bash # python3 conda create --name=labelme python=3 source activate labelme # conda install -c conda-forge pyside2 # conda install pyqt # pip install pyqt5 # pyqt5 can be installed via pip on python3 pip install labelme # or you can install everything by conda command # conda install labelme -c conda-forge ``` ### Ubuntu ```bash sudo apt-get install labelme # or sudo pip3 install labelme # or install standalone executable from: # https://github.com/wkentaro/labelme/releases ``` ### macOS ```bash brew install pyqt # maybe pyqt5 pip install labelme # or brew install wkentaro/labelme/labelme # command line interface # brew install --cask wkentaro/labelme/labelme # app # or install standalone executable/app from: # https://github.com/wkentaro/labelme/releases ``` ### Windows Install [Anaconda](https://www.continuum.io/downloads), then in an Anaconda Prompt run: ```bash conda create --name=labelme python=3 conda activate labelme pip install labelme # or install standalone executable/app from: # https://github.com/wkentaro/labelme/releases ``` ## Usage Run `labelme --help` for detail. The annotations are saved as a [JSON](http://www.json.org/) file. ```bash labelme # just open gui # tutorial (single image example) cd examples/tutorial labelme apc2016_obj3.jpg # specify image file labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save labelme apc2016_obj3.jpg --nodata # not include image data but relative image path in JSON file labelme apc2016_obj3.jpg \ --labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list # semantic segmentation example cd examples/semantic_segmentation labelme data_annotated/ # Open directory to annotate all images in it labelme data_annotated/ --labels labels.txt # specify label list with a file ``` ### Command Line Arguments - `--output` specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on. - The first time you run labelme, it will create a config file in `~/.labelmerc`. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the `--config` flag. - Without the `--nosortlabels` flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided. - Flags are assigned to an entire image. [Example](examples/classification) - Labels are assigned to a single polygon. [Example](examples/bbox_detection) ### FAQ - **How to convert JSON file to numpy array?** See [examples/tutorial](examples/tutorial#convert-to-dataset). - **How to load label PNG file?** See [examples/tutorial](examples/tutorial#how-to-load-label-png-file). - **How to get annotations for semantic segmentation?** See [examples/semantic_segmentation](examples/semantic_segmentation). - **How to get annotations for instance segmentation?** See [examples/instance_segmentation](examples/instance_segmentation). ## Examples ### Dataset examples * [Object Detection Dataset](https://labelme.gumroad.com/l/object-detection-dataset): 20 object categories and 1.7K images ### Annotation examples A few object categories and images: * [Image Classification](examples/image_classification) * [Bounding Box Detection](examples/bbox_detection) * [Semantic Segmentation](examples/semantic_segmentation) * [Instance Segmentation](examples/instance_segmentation) * [Video Annotation](examples/video_annotation) ## How to develop ```bash git clone https://github.com/wkentaro/labelme.git cd labelme # Install anaconda3 and labelme curl -L https://github.com/wkentaro/dotfiles/raw/main/local/bin/install_anaconda3.sh | bash -s . source .anaconda3/bin/activate pip install -e . ``` ### How to build standalone executable Below shows how to build the standalone executable on macOS, Linux and Windows. ```bash # Setup conda conda create --name labelme python=3.9 conda activate labelme # Build the standalone executable pip install . pip install 'matplotlib<3.3' pip install pyinstaller pyinstaller labelme.spec dist/labelme --version ``` ### How to contribute Make sure below test passes on your environment. See `.github/workflows/ci.yml` for more detail. ```bash pip install -r requirements-dev.txt ruff format --check # `ruff format` to auto-fix ruff check # `ruff check --fix` to auto-fix MPLBACKEND='agg' pytest -vsx tests/ ``` ## Acknowledgement This repo is the fork of [mpitid/pylabelme](https://github.com/mpitid/pylabelme).