#!/usr/bin/env python

from __future__ import print_function

import argparse
import glob
import json
import os
import os.path as osp
import sys

import imgviz
import numpy as np
import PIL.Image

import labelme


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument('input_dir', help='input annotated directory')
    parser.add_argument('output_dir', help='output dataset directory')
    parser.add_argument('--labels', help='labels file', required=True)
    parser.add_argument(
        '--noviz', help='no visualization', action='store_true'
    )
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print('Output directory already exists:', args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
    os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
    os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
    if not args.noviz:
        os.makedirs(
            osp.join(args.output_dir, 'SegmentationClassVisualization')
        )
    os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
    os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
    if not args.noviz:
        os.makedirs(
            osp.join(args.output_dir, 'SegmentationObjectVisualization')
        )
    print('Creating dataset:', args.output_dir)

    class_names = []
    class_name_to_id = {}
    for i, line in enumerate(open(args.labels).readlines()):
        class_id = i - 1  # starts with -1
        class_name = line.strip()
        class_name_to_id[class_name] = class_id
        if class_id == -1:
            assert class_name == '__ignore__'
            continue
        elif class_id == 0:
            assert class_name == '_background_'
        class_names.append(class_name)
    class_names = tuple(class_names)
    print('class_names:', class_names)
    out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
    with open(out_class_names_file, 'w') as f:
        f.writelines('\n'.join(class_names))
    print('Saved class_names:', out_class_names_file)

    for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
        print('Generating dataset from:', label_file)
        with open(label_file) as f:
            base = osp.splitext(osp.basename(label_file))[0]
            out_img_file = osp.join(
                args.output_dir, 'JPEGImages', base + '.jpg')
            out_cls_file = osp.join(
                args.output_dir, 'SegmentationClass', base + '.npy')
            out_clsp_file = osp.join(
                args.output_dir, 'SegmentationClassPNG', base + '.png')
            if not args.noviz:
                out_clsv_file = osp.join(
                    args.output_dir,
                    'SegmentationClassVisualization',
                    base + '.jpg',
                )
            out_ins_file = osp.join(
                args.output_dir, 'SegmentationObject', base + '.npy')
            out_insp_file = osp.join(
                args.output_dir, 'SegmentationObjectPNG', base + '.png')
            if not args.noviz:
                out_insv_file = osp.join(
                    args.output_dir,
                    'SegmentationObjectVisualization',
                    base + '.jpg',
                )

            data = json.load(f)

            img_file = osp.join(osp.dirname(label_file), data['imagePath'])
            img = np.asarray(PIL.Image.open(img_file))
            PIL.Image.fromarray(img).save(out_img_file)

            cls, ins = labelme.utils.shapes_to_label(
                img_shape=img.shape,
                shapes=data['shapes'],
                label_name_to_value=class_name_to_id,
            )
            ins[cls == -1] = 0  # ignore it.

            # class label
            labelme.utils.lblsave(out_clsp_file, cls)
            np.save(out_cls_file, cls)
            if not args.noviz:
                clsv = imgviz.label2rgb(
                    label=cls,
                    img=imgviz.rgb2gray(img),
                    label_names=class_names,
                    font_size=15,
                    loc='rb',
                )
                imgviz.io.imsave(out_clsv_file, clsv)

            # instance label
            labelme.utils.lblsave(out_insp_file, ins)
            np.save(out_ins_file, ins)
            if not args.noviz:
                instance_ids = np.unique(ins)
                instance_names = [str(i) for i in range(max(instance_ids) + 1)]
                insv = imgviz.label2rgb(
                    label=ins,
                    img=imgviz.rgb2gray(img),
                    label_names=instance_names,
                    font_size=15,
                    loc='rb',
                )
                imgviz.io.imsave(out_insv_file, insv)


if __name__ == '__main__':
    main()