| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 | 
							
- from __future__ import print_function
 
- import argparse
 
- import glob
 
- import json
 
- import os
 
- import os.path as osp
 
- import sys
 
- import numpy as np
 
- import PIL.Image
 
- import labelme
 
- def main():
 
-     parser = argparse.ArgumentParser(
 
-         formatter_class=argparse.ArgumentDefaultsHelpFormatter
 
-     )
 
-     parser.add_argument('input_dir', help='input annotated directory')
 
-     parser.add_argument('output_dir', help='output dataset directory')
 
-     parser.add_argument('--labels', help='labels file', required=True)
 
-     args = parser.parse_args()
 
-     if osp.exists(args.output_dir):
 
-         print('Output directory already exists:', args.output_dir)
 
-         sys.exit(1)
 
-     os.makedirs(args.output_dir)
 
-     os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
 
-     os.makedirs(osp.join(args.output_dir, 'SegmentationObjectVisualization'))
 
-     print('Creating dataset:', args.output_dir)
 
-     class_names = []
 
-     class_name_to_id = {}
 
-     for i, line in enumerate(open(args.labels).readlines()):
 
-         class_id = i - 1  
 
-         class_name = line.strip()
 
-         class_name_to_id[class_name] = class_id
 
-         if class_id == -1:
 
-             assert class_name == '__ignore__'
 
-             continue
 
-         elif class_id == 0:
 
-             assert class_name == '_background_'
 
-         class_names.append(class_name)
 
-     class_names = tuple(class_names)
 
-     print('class_names:', class_names)
 
-     out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
 
-     with open(out_class_names_file, 'w') as f:
 
-         f.writelines('\n'.join(class_names))
 
-     print('Saved class_names:', out_class_names_file)
 
-     colormap = labelme.utils.label_colormap(255)
 
-     for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
 
-         print('Generating dataset from:', label_file)
 
-         with open(label_file) as f:
 
-             base = osp.splitext(osp.basename(label_file))[0]
 
-             out_img_file = osp.join(
 
-                 args.output_dir, 'JPEGImages', base + '.jpg')
 
-             out_cls_file = osp.join(
 
-                 args.output_dir, 'SegmentationClass', base + '.npy')
 
-             out_clsp_file = osp.join(
 
-                 args.output_dir, 'SegmentationClassPNG', base + '.png')
 
-             out_clsv_file = osp.join(
 
-                 args.output_dir,
 
-                 'SegmentationClassVisualization',
 
-                 base + '.jpg',
 
-             )
 
-             out_ins_file = osp.join(
 
-                 args.output_dir, 'SegmentationObject', base + '.npy')
 
-             out_insp_file = osp.join(
 
-                 args.output_dir, 'SegmentationObjectPNG', base + '.png')
 
-             out_insv_file = osp.join(
 
-                 args.output_dir,
 
-                 'SegmentationObjectVisualization',
 
-                 base + '.jpg',
 
-             )
 
-             data = json.load(f)
 
-             img_file = osp.join(osp.dirname(label_file), data['imagePath'])
 
-             img = np.asarray(PIL.Image.open(img_file))
 
-             PIL.Image.fromarray(img).save(out_img_file)
 
-             cls, ins = labelme.utils.shapes_to_label(
 
-                 img_shape=img.shape,
 
-                 shapes=data['shapes'],
 
-                 label_name_to_value=class_name_to_id,
 
-                 type='instance',
 
-             )
 
-             ins[cls == -1] = 0  
 
-             
 
-             labelme.utils.lblsave(out_clsp_file, cls)
 
-             np.save(out_cls_file, cls)
 
-             clsv = labelme.utils.draw_label(
 
-                 cls, img, class_names, colormap=colormap)
 
-             PIL.Image.fromarray(clsv).save(out_clsv_file)
 
-             
 
-             labelme.utils.lblsave(out_insp_file, ins)
 
-             np.save(out_ins_file, ins)
 
-             instance_ids = np.unique(ins)
 
-             instance_names = [str(i) for i in range(max(instance_ids) + 1)]
 
-             insv = labelme.utils.draw_label(ins, img, instance_names)
 
-             PIL.Image.fromarray(insv).save(out_insv_file)
 
- if __name__ == '__main__':
 
-     main()
 
 
  |