123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- #!/usr/bin/env python
- from __future__ import print_function
- import argparse
- import glob
- import os
- import os.path as osp
- import sys
- import imgviz
- import numpy as np
- import labelme
- def main():
- parser = argparse.ArgumentParser(
- formatter_class=argparse.ArgumentDefaultsHelpFormatter
- )
- parser.add_argument("input_dir", help="input annotated directory")
- parser.add_argument("output_dir", help="output dataset directory")
- parser.add_argument("--labels", help="labels file", required=True)
- parser.add_argument(
- "--noviz", help="no visualization", action="store_true"
- )
- args = parser.parse_args()
- if osp.exists(args.output_dir):
- print("Output directory already exists:", args.output_dir)
- sys.exit(1)
- os.makedirs(args.output_dir)
- os.makedirs(osp.join(args.output_dir, "JPEGImages"))
- os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
- os.makedirs(osp.join(args.output_dir, "SegmentationClassPNG"))
- if not args.noviz:
- os.makedirs(
- osp.join(args.output_dir, "SegmentationClassVisualization")
- )
- print("Creating dataset:", args.output_dir)
- class_names = []
- class_name_to_id = {}
- for i, line in enumerate(open(args.labels).readlines()):
- class_id = i - 1 # starts with -1
- class_name = line.strip()
- class_name_to_id[class_name] = class_id
- if class_id == -1:
- assert class_name == "__ignore__"
- continue
- elif class_id == 0:
- assert class_name == "_background_"
- class_names.append(class_name)
- class_names = tuple(class_names)
- print("class_names:", class_names)
- out_class_names_file = osp.join(args.output_dir, "class_names.txt")
- with open(out_class_names_file, "w") as f:
- f.writelines("\n".join(class_names))
- print("Saved class_names:", out_class_names_file)
- for filename in glob.glob(osp.join(args.input_dir, "*.json")):
- print("Generating dataset from:", filename)
- label_file = labelme.LabelFile(filename=filename)
- base = osp.splitext(osp.basename(filename))[0]
- out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")
- out_lbl_file = osp.join(
- args.output_dir, "SegmentationClass", base + ".npy"
- )
- out_png_file = osp.join(
- args.output_dir, "SegmentationClassPNG", base + ".png"
- )
- if not args.noviz:
- out_viz_file = osp.join(
- args.output_dir,
- "SegmentationClassVisualization",
- base + ".jpg",
- )
- with open(out_img_file, "wb") as f:
- f.write(label_file.imageData)
- img = labelme.utils.img_data_to_arr(label_file.imageData)
- lbl, _ = labelme.utils.shapes_to_label(
- img_shape=img.shape,
- shapes=label_file.shapes,
- label_name_to_value=class_name_to_id,
- )
- labelme.utils.lblsave(out_png_file, lbl)
- np.save(out_lbl_file, lbl)
- if not args.noviz:
- viz = imgviz.label2rgb(
- label=lbl,
- img=imgviz.rgb2gray(img),
- font_size=15,
- label_names=class_names,
- loc="rb",
- )
- imgviz.io.imsave(out_viz_file, viz)
- if __name__ == "__main__":
- main()
|