1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import argparse
- import json
- import os
- import os.path as osp
- import warnings
- import matplotlib
- matplotlib.use('Agg')
- import numpy as np
- import PIL.Image
- import yaml
- from labelme import utils
- def main():
- warnings.warn("This script is aimed to demonstrate how to convert the\n"
- "JSON file to a single image dataset, and not to handle\n"
- "multiple JSON files to generate a real-use dataset.")
- parser = argparse.ArgumentParser()
- parser.add_argument('json_file')
- parser.add_argument('-o', '--out', default=None)
- args = parser.parse_args()
- json_file = args.json_file
- if args.out is None:
- out_dir = osp.basename(json_file).replace('.', '_')
- out_dir = osp.join(osp.dirname(json_file), out_dir)
- else:
- out_dir = args.out
- if not osp.exists(out_dir):
- os.mkdir(out_dir)
- data = json.load(open(json_file))
- img = utils.img_b64_to_array(data['imageData'])
- lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])
- captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
- lbl_viz = utils.draw_label(lbl, img, captions)
- PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
- PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
- PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
- with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
- for lbl_name in lbl_names:
- f.write(lbl_name + '\n')
- warnings.warn('info.yaml is being replaced by label_names.txt')
- info = dict(label_names=lbl_names)
- with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
- yaml.safe_dump(info, f, default_flow_style=False)
- print('Saved to: %s' % out_dir)
- if __name__ == '__main__':
- main()
|