Kentaro Wada 5367a29818 Update examples/instance_segmentation/README.md with --labelflags 6 anni fa
..
.readme 01f10365f4 Update README.md 6 anni fa
data_annotated 5367a29818 Update examples/instance_segmentation/README.md with --labelflags 6 anni fa
data_dataset_coco c1b1543e86 Fix labelme2coco.py to parse with pycocotools 6 anni fa
data_dataset_voc 800dc25c43 Update examples/instance_segmentation/data_dataset_voc 6 anni fa
README.md 5367a29818 Update examples/instance_segmentation/README.md with --labelflags 6 anni fa
labelme2coco.py 2314de584b labelme2coco: remove assert for background class (coco annotations don't have one) 6 anni fa
labelme2voc.py f1526d7168 --labels required=True 6 anni fa
labels.txt 4f2e652483 Add examples/instance_segmentation 7 anni fa

README.md

Instance Segmentation Example

Annotation

labelme data_annotated --labels labels.txt --nodata
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person-\d+: [male]}'

Convert to VOC-format Dataset

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt


Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)

Note that the label file contains only very low label values (ex. 0, 4, 14), and 255 indicates the __ignore__ label value (-1 in the npy file).
You can see the label PNG file by following.

labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right

Convert to COCO-format Dataset

# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt