segment_anything_model.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. import collections
  2. import threading
  3. import imgviz
  4. import numpy as np
  5. import onnxruntime
  6. import skimage
  7. from ..logger import logger
  8. from . import _utils
  9. class SegmentAnythingModel:
  10. def __init__(self, encoder_path, decoder_path):
  11. self._image_size = 1024
  12. self._encoder_session = onnxruntime.InferenceSession(encoder_path)
  13. self._decoder_session = onnxruntime.InferenceSession(decoder_path)
  14. self._lock = threading.Lock()
  15. self._image_embedding_cache = collections.OrderedDict()
  16. self._thread = None
  17. def set_image(self, image: np.ndarray):
  18. with self._lock:
  19. self._image = image
  20. self._image_embedding = self._image_embedding_cache.get(
  21. self._image.tobytes()
  22. )
  23. if self._image_embedding is None:
  24. self._thread = threading.Thread(
  25. target=self._compute_and_cache_image_embedding
  26. )
  27. self._thread.start()
  28. def _compute_and_cache_image_embedding(self):
  29. with self._lock:
  30. logger.debug("Computing image embedding...")
  31. self._image_embedding = _compute_image_embedding(
  32. image_size=self._image_size,
  33. encoder_session=self._encoder_session,
  34. image=self._image,
  35. )
  36. if len(self._image_embedding_cache) > 10:
  37. self._image_embedding_cache.popitem(last=False)
  38. self._image_embedding_cache[
  39. self._image.tobytes()
  40. ] = self._image_embedding
  41. logger.debug("Done computing image embedding.")
  42. def _get_image_embedding(self):
  43. if self._thread is not None:
  44. self._thread.join()
  45. self._thread = None
  46. with self._lock:
  47. return self._image_embedding
  48. def predict_mask_from_points(self, points, point_labels):
  49. return _compute_mask_from_points(
  50. image_size=self._image_size,
  51. decoder_session=self._decoder_session,
  52. image=self._image,
  53. image_embedding=self._get_image_embedding(),
  54. points=points,
  55. point_labels=point_labels,
  56. )
  57. def predict_polygon_from_points(self, points, point_labels):
  58. mask = self.predict_mask_from_points(
  59. points=points, point_labels=point_labels
  60. )
  61. return _utils.compute_polygon_from_mask(mask=mask)
  62. def _compute_scale_to_resize_image(image_size, image):
  63. height, width = image.shape[:2]
  64. if width > height:
  65. scale = image_size / width
  66. new_height = int(round(height * scale))
  67. new_width = image_size
  68. else:
  69. scale = image_size / height
  70. new_height = image_size
  71. new_width = int(round(width * scale))
  72. return scale, new_height, new_width
  73. def _resize_image(image_size, image):
  74. scale, new_height, new_width = _compute_scale_to_resize_image(
  75. image_size=image_size, image=image
  76. )
  77. scaled_image = imgviz.resize(
  78. image,
  79. height=new_height,
  80. width=new_width,
  81. backend="pillow",
  82. ).astype(np.float32)
  83. return scale, scaled_image
  84. def _compute_image_embedding(image_size, encoder_session, image):
  85. image = imgviz.asrgb(image)
  86. scale, x = _resize_image(image_size, image)
  87. x = (x - np.array([123.675, 116.28, 103.53], dtype=np.float32)) / np.array(
  88. [58.395, 57.12, 57.375], dtype=np.float32
  89. )
  90. x = np.pad(
  91. x,
  92. (
  93. (0, image_size - x.shape[0]),
  94. (0, image_size - x.shape[1]),
  95. (0, 0),
  96. ),
  97. )
  98. x = x.transpose(2, 0, 1)[None, :, :, :]
  99. output = encoder_session.run(output_names=None, input_feed={"x": x})
  100. image_embedding = output[0]
  101. return image_embedding
  102. def _compute_mask_from_points(
  103. image_size, decoder_session, image, image_embedding, points, point_labels
  104. ):
  105. input_point = np.array(points, dtype=np.float32)
  106. input_label = np.array(point_labels, dtype=np.int32)
  107. onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
  108. None, :, :
  109. ]
  110. onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
  111. None, :
  112. ].astype(np.float32)
  113. scale, new_height, new_width = _compute_scale_to_resize_image(
  114. image_size=image_size, image=image
  115. )
  116. onnx_coord = (
  117. onnx_coord.astype(float)
  118. * (new_width / image.shape[1], new_height / image.shape[0])
  119. ).astype(np.float32)
  120. onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
  121. onnx_has_mask_input = np.array([-1], dtype=np.float32)
  122. decoder_inputs = {
  123. "image_embeddings": image_embedding,
  124. "point_coords": onnx_coord,
  125. "point_labels": onnx_label,
  126. "mask_input": onnx_mask_input,
  127. "has_mask_input": onnx_has_mask_input,
  128. "orig_im_size": np.array(image.shape[:2], dtype=np.float32),
  129. }
  130. masks, _, _ = decoder_session.run(None, decoder_inputs)
  131. mask = masks[0, 0] # (1, 1, H, W) -> (H, W)
  132. mask = mask > 0.0
  133. MIN_SIZE_RATIO = 0.05
  134. skimage.morphology.remove_small_objects(
  135. mask, min_size=mask.sum() * MIN_SIZE_RATIO, out=mask
  136. )
  137. if 0:
  138. imgviz.io.imsave(
  139. "mask.jpg", imgviz.label2rgb(mask, imgviz.rgb2gray(image))
  140. )
  141. return mask