123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- #!/usr/bin/env python
- from __future__ import print_function
- import argparse
- import glob
- import io
- import json
- import os
- import os.path as osp
- import matplotlib
- matplotlib.use('Agg')
- import matplotlib.pyplot as plt
- import numpy as np
- import PIL.Image
- import PIL.ImagePalette
- import skimage.color
- import skimage.io
- import labelme
- from labelme.utils import label2rgb
- from labelme.utils import label_colormap
- # TODO(wkentaro): Move to labelme/utils.py
- # contrib
- # -----------------------------------------------------------------------------
- def labelme_shapes_to_label(img_shape, shapes, label_name_to_value):
- lbl = np.zeros(img_shape[:2], dtype=np.int32)
- for shape in shapes:
- polygons = shape['points']
- label_name = shape['label']
- if label_name in label_name_to_value:
- label_value = label_name_to_value[label_name]
- else:
- label_value = len(label_name_to_value)
- label_name_to_value[label_name] = label_value
- mask = labelme.utils.polygons_to_mask(img_shape[:2], polygons)
- lbl[mask] = label_value
- return lbl
- def draw_label(label, img, label_names, colormap=None):
- plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
- wspace=0, hspace=0)
- plt.margins(0, 0)
- plt.gca().xaxis.set_major_locator(plt.NullLocator())
- plt.gca().yaxis.set_major_locator(plt.NullLocator())
- if colormap is None:
- colormap = label_colormap(len(label_names))
- label_viz = label2rgb(
- label, img, n_labels=len(label_names), alpha=.5)
- plt.imshow(label_viz)
- plt.axis('off')
- plt_handlers = []
- plt_titles = []
- for label_value, label_name in enumerate(label_names):
- if label_value not in label:
- continue
- if label_name.startswith('_'):
- continue
- fc = colormap[label_value]
- p = plt.Rectangle((0, 0), 1, 1, fc=fc)
- plt_handlers.append(p)
- plt_titles.append(label_name)
- plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)
- f = io.BytesIO()
- plt.savefig(f, bbox_inches='tight', pad_inches=0)
- plt.cla()
- plt.close()
- out_size = (img.shape[1], img.shape[0])
- out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB')
- out = np.asarray(out)
- return out
- # -----------------------------------------------------------------------------
- def main():
- parser = argparse.ArgumentParser(
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('labels_file')
- parser.add_argument('in_dir')
- parser.add_argument('out_dir')
- args = parser.parse_args()
- if osp.exists(args.out_dir):
- print('Output directory already exists:', args.out_dir)
- quit(1)
- os.makedirs(args.out_dir)
- os.makedirs(osp.join(args.out_dir, 'JPEGImages'))
- os.makedirs(osp.join(args.out_dir, 'SegmentationClass'))
- os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization'))
- print('Creating dataset:', args.out_dir)
- class_names = []
- class_name_to_id = {}
- for i, line in enumerate(open(args.labels_file).readlines()):
- class_id = i - 1 # starts with -1
- class_name = line.strip()
- class_name_to_id[class_name] = class_id
- if class_id == -1:
- assert class_name == '__ignore__'
- continue
- elif class_id == 0:
- assert class_name == '_background_'
- class_names.append(class_name)
- class_names = tuple(class_names)
- print('class_names:', class_names)
- out_class_names_file = osp.join(args.out_dir, 'class_names.txt')
- with open(out_class_names_file, 'w') as f:
- f.writelines('\n'.join(class_names))
- print('Saved class_names:', out_class_names_file)
- colormap = labelme.utils.label_colormap(255)
- for label_file in glob.glob(osp.join(args.in_dir, '*.json')):
- print('Generating dataset from:', label_file)
- with open(label_file) as f:
- base = osp.splitext(osp.basename(label_file))[0]
- out_img_file = osp.join(
- args.out_dir, 'JPEGImages', base + '.jpg')
- out_lbl_file = osp.join(
- args.out_dir, 'SegmentationClass', base + '.png')
- out_viz_file = osp.join(
- args.out_dir, 'SegmentationClassVisualization', base + '.jpg')
- data = json.load(f)
- img_file = osp.join(osp.dirname(label_file), data['imagePath'])
- img = skimage.io.imread(img_file)
- skimage.io.imsave(out_img_file, img)
- lbl = labelme_shapes_to_label(
- img_shape=img.shape,
- shapes=data['shapes'],
- label_name_to_value=class_name_to_id,
- )
- lbl_pil = PIL.Image.fromarray(lbl)
- # Only works with uint8 label
- # lbl_pil = PIL.Image.fromarray(lbl, mode='P')
- # lbl_pil.putpalette((colormap * 255).flatten())
- lbl_pil.save(out_lbl_file)
- viz = draw_label(
- lbl, img, class_names, colormap=colormap)
- skimage.io.imsave(out_viz_file, viz)
- if __name__ == '__main__':
- main()
|