Kentaro Wada 1a2cadb5b5 Fix for black==22.8.0 2 lat temu
..
.readme 03d7d365ce Update README images 5 lat temu
data_annotated 61f5fee418 Remove lineColor and shapeColor keys from example JSON files 5 lat temu
data_dataset_coco a8b94863d2 Add data_dataset_coco/Visualization 4 lat temu
data_dataset_voc 8683269fef Update examples/instance_segmentation 5 lat temu
README.md 66d007fab8 Update README.md for instance_segmentation 3 lat temu
labelme2coco.py 1a2cadb5b5 Fix for black==22.8.0 2 lat temu
labelme2voc.py 783f1f7c0e Support imgviz >= 1.3 3 lat temu
labels.txt 4f2e652483 Add examples/instance_segmentation 7 lat temu

README.md

Instance Segmentation Example

Annotation

labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}'
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person: [male]}'

Convert to VOC-format Dataset

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt


Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)

Note that the label file contains only very low label values (ex. 0, 4, 14), and 255 indicates the __ignore__ label value (-1 in the npy file).
You can see the label PNG file by following.

labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right

Convert to COCO-format Dataset

# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt