labelme2voc.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. #!/usr/bin/env python
  2. from __future__ import print_function
  3. import argparse
  4. import glob
  5. import json
  6. import os
  7. import os.path as osp
  8. import sys
  9. import numpy as np
  10. import PIL.Image
  11. import labelme
  12. def main():
  13. parser = argparse.ArgumentParser(
  14. formatter_class=argparse.ArgumentDefaultsHelpFormatter
  15. )
  16. parser.add_argument('input_dir', help='input annotated directory')
  17. parser.add_argument('output_dir', help='output dataset directory')
  18. parser.add_argument('--labels', help='labels file', required=True)
  19. parser.add_argument('--no-vis', help='no visualization results to be created', action='store_false')
  20. args = parser.parse_args()
  21. if osp.exists(args.output_dir):
  22. print('Output directory already exists:', args.output_dir)
  23. sys.exit(1)
  24. os.makedirs(args.output_dir)
  25. os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
  26. os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
  27. os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
  28. if not args.no_vis:
  29. os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
  30. print('Creating dataset:', args.output_dir)
  31. class_names = []
  32. class_name_to_id = {}
  33. for i, line in enumerate(open(args.labels).readlines()):
  34. class_id = i - 1 # starts with -1
  35. class_name = line.strip()
  36. class_name_to_id[class_name] = class_id
  37. if class_id == -1:
  38. assert class_name == '__ignore__'
  39. continue
  40. elif class_id == 0:
  41. assert class_name == '_background_'
  42. class_names.append(class_name)
  43. class_names = tuple(class_names)
  44. print('class_names:', class_names)
  45. out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
  46. with open(out_class_names_file, 'w') as f:
  47. f.writelines('\n'.join(class_names))
  48. print('Saved class_names:', out_class_names_file)
  49. colormap = labelme.utils.label_colormap(255)
  50. for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
  51. print('Generating dataset from:', label_file)
  52. with open(label_file) as f:
  53. base = osp.splitext(osp.basename(label_file))[0]
  54. out_img_file = osp.join(
  55. args.output_dir, 'JPEGImages', base + '.jpg')
  56. out_lbl_file = osp.join(
  57. args.output_dir, 'SegmentationClass', base + '.npy')
  58. out_png_file = osp.join(
  59. args.output_dir, 'SegmentationClassPNG', base + '.png')
  60. if not args.no_vis:
  61. out_viz_file = osp.join(
  62. args.output_dir,
  63. 'SegmentationClassVisualization',
  64. base + '.jpg',
  65. )
  66. data = json.load(f)
  67. img_file = osp.join(osp.dirname(label_file), data['imagePath'])
  68. img = np.asarray(PIL.Image.open(img_file))
  69. PIL.Image.fromarray(img).save(out_img_file)
  70. lbl = labelme.utils.shapes_to_label(
  71. img_shape=img.shape,
  72. shapes=data['shapes'],
  73. label_name_to_value=class_name_to_id,
  74. )
  75. labelme.utils.lblsave(out_png_file, lbl)
  76. np.save(out_lbl_file, lbl)
  77. if not args.no_vis:
  78. viz = labelme.utils.draw_label(
  79. lbl, img, class_names, colormap=colormap)
  80. PIL.Image.fromarray(viz).save(out_viz_file)
  81. if __name__ == '__main__':
  82. main()