123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import collections
- import threading
- import imgviz
- import numpy as np
- import onnxruntime
- import skimage
- from ..logger import logger
- from . import _utils
- class EfficientSam:
- def __init__(self, encoder_path, decoder_path):
- self._encoder_session = onnxruntime.InferenceSession(encoder_path)
- self._decoder_session = onnxruntime.InferenceSession(decoder_path)
- self._lock = threading.Lock()
- self._image_embedding_cache = collections.OrderedDict()
- self._thread = None
- def set_image(self, image: np.ndarray):
- with self._lock:
- self._image = image
- self._image_embedding = self._image_embedding_cache.get(
- self._image.tobytes()
- )
- if self._image_embedding is None:
- self._thread = threading.Thread(
- target=self._compute_and_cache_image_embedding
- )
- self._thread.start()
- def _compute_and_cache_image_embedding(self):
- with self._lock:
- logger.debug("Computing image embedding...")
- image = imgviz.rgba2rgb(self._image)
- batched_images = image.transpose(2, 0, 1)[None].astype(np.float32) / 255.0
- (self._image_embedding,) = self._encoder_session.run(
- output_names=None,
- input_feed={"batched_images": batched_images},
- )
- if len(self._image_embedding_cache) > 10:
- self._image_embedding_cache.popitem(last=False)
- self._image_embedding_cache[self._image.tobytes()] = self._image_embedding
- logger.debug("Done computing image embedding.")
- def _get_image_embedding(self):
- if self._thread is not None:
- self._thread.join()
- self._thread = None
- with self._lock:
- return self._image_embedding
- def predict_mask_from_points(self, points, point_labels):
- return _compute_mask_from_points(
- decoder_session=self._decoder_session,
- image=self._image,
- image_embedding=self._get_image_embedding(),
- points=points,
- point_labels=point_labels,
- )
- def predict_polygon_from_points(self, points, point_labels):
- mask = self.predict_mask_from_points(points=points, point_labels=point_labels)
- return _utils.compute_polygon_from_mask(mask=mask)
- def _compute_mask_from_points(
- decoder_session, image, image_embedding, points, point_labels
- ):
- input_point = np.array(points, dtype=np.float32)
- input_label = np.array(point_labels, dtype=np.float32)
- # batch_size, num_queries, num_points, 2
- batched_point_coords = input_point[None, None, :, :]
- # batch_size, num_queries, num_points
- batched_point_labels = input_label[None, None, :]
- decoder_inputs = {
- "image_embeddings": image_embedding,
- "batched_point_coords": batched_point_coords,
- "batched_point_labels": batched_point_labels,
- "orig_im_size": np.array(image.shape[:2], dtype=np.int64),
- }
- masks, _, _ = decoder_session.run(None, decoder_inputs)
- mask = masks[0, 0, 0, :, :] # (1, 1, 3, H, W) -> (H, W)
- mask = mask > 0.0
- MIN_SIZE_RATIO = 0.05
- skimage.morphology.remove_small_objects(
- mask, min_size=mask.sum() * MIN_SIZE_RATIO, out=mask
- )
- if 0:
- imgviz.io.imsave("mask.jpg", imgviz.label2rgb(mask, imgviz.rgb2gray(image)))
- return mask
|