labelme2voc.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. #!/usr/bin/env python
  2. from __future__ import print_function
  3. import argparse
  4. import glob
  5. import io
  6. import json
  7. import os
  8. import os.path as osp
  9. import matplotlib
  10. matplotlib.use('Agg')
  11. import matplotlib.pyplot as plt
  12. import numpy as np
  13. import PIL.Image
  14. import PIL.ImagePalette
  15. import labelme
  16. from labelme.utils import label2rgb
  17. from labelme.utils import label_colormap
  18. def main():
  19. parser = argparse.ArgumentParser(
  20. formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  21. parser.add_argument('labels_file')
  22. parser.add_argument('in_dir')
  23. parser.add_argument('out_dir')
  24. args = parser.parse_args()
  25. if osp.exists(args.out_dir):
  26. print('Output directory already exists:', args.out_dir)
  27. quit(1)
  28. os.makedirs(args.out_dir)
  29. os.makedirs(osp.join(args.out_dir, 'JPEGImages'))
  30. os.makedirs(osp.join(args.out_dir, 'SegmentationClass'))
  31. os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization'))
  32. print('Creating dataset:', args.out_dir)
  33. class_names = []
  34. class_name_to_id = {}
  35. for i, line in enumerate(open(args.labels_file).readlines()):
  36. class_id = i - 1 # starts with -1
  37. class_name = line.strip()
  38. class_name_to_id[class_name] = class_id
  39. if class_id == -1:
  40. assert class_name == '__ignore__'
  41. continue
  42. elif class_id == 0:
  43. assert class_name == '_background_'
  44. class_names.append(class_name)
  45. class_names = tuple(class_names)
  46. print('class_names:', class_names)
  47. out_class_names_file = osp.join(args.out_dir, 'class_names.txt')
  48. with open(out_class_names_file, 'w') as f:
  49. f.writelines('\n'.join(class_names))
  50. print('Saved class_names:', out_class_names_file)
  51. colormap = labelme.utils.label_colormap(255)
  52. for label_file in glob.glob(osp.join(args.in_dir, '*.json')):
  53. print('Generating dataset from:', label_file)
  54. with open(label_file) as f:
  55. base = osp.splitext(osp.basename(label_file))[0]
  56. out_img_file = osp.join(
  57. args.out_dir, 'JPEGImages', base + '.jpg')
  58. out_lbl_file = osp.join(
  59. args.out_dir, 'SegmentationClass', base + '.png')
  60. out_viz_file = osp.join(
  61. args.out_dir, 'SegmentationClassVisualization', base + '.jpg')
  62. data = json.load(f)
  63. img_file = osp.join(osp.dirname(label_file), data['imagePath'])
  64. img = np.asarray(PIL.Image.open(img_file))
  65. PIL.Image.fromarray(img).save(out_img_file)
  66. lbl = labelme.utils.shapes_to_label(
  67. img_shape=img.shape,
  68. shapes=data['shapes'],
  69. label_name_to_value=class_name_to_id,
  70. )
  71. lbl_pil = PIL.Image.fromarray(lbl)
  72. # Only works with uint8 label
  73. # lbl_pil = PIL.Image.fromarray(lbl, mode='P')
  74. # lbl_pil.putpalette((colormap * 255).flatten())
  75. lbl_pil.save(out_lbl_file)
  76. label_names = ['%d: %s' % (cls_id, cls_name)
  77. for cls_id, cls_name in enumerate(class_names)]
  78. viz = labelme.utils.draw_label(
  79. lbl, img, label_names, colormap=colormap)
  80. PIL.Image.fromarray(viz).save(out_viz_file)
  81. if __name__ == '__main__':
  82. main()