Kentaro Wada 1a2cadb5b5 Fix for black==22.8.0 2 rokov pred
..
.readme 03d7d365ce Update README images 5 rokov pred
data_annotated 61f5fee418 Remove lineColor and shapeColor keys from example JSON files 5 rokov pred
data_dataset_coco a8b94863d2 Add data_dataset_coco/Visualization 4 rokov pred
data_dataset_voc 8683269fef Update examples/instance_segmentation 5 rokov pred
README.md 66d007fab8 Update README.md for instance_segmentation 3 rokov pred
labelme2coco.py 1a2cadb5b5 Fix for black==22.8.0 2 rokov pred
labelme2voc.py 783f1f7c0e Support imgviz >= 1.3 3 rokov pred
labels.txt 4f2e652483 Add examples/instance_segmentation 7 rokov pred

README.md

Instance Segmentation Example

Annotation

labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}'
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person: [male]}'

Convert to VOC-format Dataset

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt


Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)

Note that the label file contains only very low label values (ex. 0, 4, 14), and 255 indicates the __ignore__ label value (-1 in the npy file).
You can see the label PNG file by following.

labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right

Convert to COCO-format Dataset

# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt