| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | 
							- #!/usr/bin/env python
 
- from __future__ import print_function
 
- import argparse
 
- import glob
 
- import json
 
- import os
 
- import os.path as osp
 
- import sys
 
- try:
 
-     import lxml.builder
 
-     import lxml.etree
 
- except ImportError:
 
-     print('Please install lxml:\n\n    pip install lxml\n')
 
-     sys.exit(1)
 
- import numpy as np
 
- import PIL.Image
 
- import labelme
 
- def main():
 
-     parser = argparse.ArgumentParser(
 
-         formatter_class=argparse.ArgumentDefaultsHelpFormatter
 
-     )
 
-     parser.add_argument('input_dir', help='input annotated directory')
 
-     parser.add_argument('output_dir', help='output dataset directory')
 
-     parser.add_argument('--labels', help='labels file', required=True)
 
-     args = parser.parse_args()
 
-     if osp.exists(args.output_dir):
 
-         print('Output directory already exists:', args.output_dir)
 
-         sys.exit(1)
 
-     os.makedirs(args.output_dir)
 
-     os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
 
-     os.makedirs(osp.join(args.output_dir, 'Annotations'))
 
-     os.makedirs(osp.join(args.output_dir, 'AnnotationsVisualization'))
 
-     print('Creating dataset:', args.output_dir)
 
-     class_names = []
 
-     class_name_to_id = {}
 
-     for i, line in enumerate(open(args.labels).readlines()):
 
-         class_id = i - 1  # starts with -1
 
-         class_name = line.strip()
 
-         class_name_to_id[class_name] = class_id
 
-         if class_id == -1:
 
-             assert class_name == '__ignore__'
 
-             continue
 
-         elif class_id == 0:
 
-             assert class_name == '_background_'
 
-         class_names.append(class_name)
 
-     class_names = tuple(class_names)
 
-     print('class_names:', class_names)
 
-     out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
 
-     with open(out_class_names_file, 'w') as f:
 
-         f.writelines('\n'.join(class_names))
 
-     print('Saved class_names:', out_class_names_file)
 
-     for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
 
-         print('Generating dataset from:', label_file)
 
-         with open(label_file) as f:
 
-             data = json.load(f)
 
-         base = osp.splitext(osp.basename(label_file))[0]
 
-         out_img_file = osp.join(
 
-             args.output_dir, 'JPEGImages', base + '.jpg')
 
-         out_xml_file = osp.join(
 
-             args.output_dir, 'Annotations', base + '.xml')
 
-         out_viz_file = osp.join(
 
-             args.output_dir, 'AnnotationsVisualization', base + '.jpg')
 
-         img_file = osp.join(osp.dirname(label_file), data['imagePath'])
 
-         img = np.asarray(PIL.Image.open(img_file))
 
-         PIL.Image.fromarray(img).save(out_img_file)
 
-         maker = lxml.builder.ElementMaker()
 
-         xml = maker.annotation(
 
-             maker.folder(),
 
-             maker.filename(base + '.jpg'),
 
-             maker.database(),    # e.g., The VOC2007 Database
 
-             maker.annotation(),  # e.g., Pascal VOC2007
 
-             maker.image(),       # e.g., flickr
 
-             maker.size(
 
-                 maker.height(str(img.shape[0])),
 
-                 maker.width(str(img.shape[1])),
 
-                 maker.depth(str(img.shape[2])),
 
-             ),
 
-             maker.segmented(),
 
-         )
 
-         bboxes = []
 
-         labels = []
 
-         for shape in data['shapes']:
 
-             if shape['shape_type'] != 'rectangle':
 
-                 print('Skipping shape: label={label}, shape_type={shape_type}'
 
-                       .format(**shape))
 
-                 continue
 
-             class_name = shape['label']
 
-             class_id = class_names.index(class_name)
 
-             (xmin, ymin), (xmax, ymax) = shape['points']
 
-             bboxes.append([xmin, ymin, xmax, ymax])
 
-             labels.append(class_id)
 
-             xml.append(
 
-                 maker.object(
 
-                     maker.name(shape['label']),
 
-                     maker.pose(),
 
-                     maker.truncated(),
 
-                     maker.difficult(),
 
-                     maker.bndbox(
 
-                         maker.xmin(str(xmin)),
 
-                         maker.ymin(str(ymin)),
 
-                         maker.xmax(str(xmax)),
 
-                         maker.ymax(str(ymax)),
 
-                     ),
 
-                 )
 
-             )
 
-         captions = [class_names[l] for l in labels]
 
-         viz = labelme.utils.draw_instances(
 
-             img, bboxes, labels, captions=captions
 
-         )
 
-         PIL.Image.fromarray(viz).save(out_viz_file)
 
-         with open(out_xml_file, 'wb') as f:
 
-             f.write(lxml.etree.tostring(xml, pretty_print=True))
 
- if __name__ == '__main__':
 
-     main()
 
 
  |