json_to_dataset.py 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. import argparse
  2. import json
  3. import os
  4. import os.path as osp
  5. import warnings
  6. import numpy as np
  7. import PIL.Image
  8. import yaml
  9. from labelme import utils
  10. def main():
  11. warnings.warn("This script is aimed to demonstrate how to convert the\n"
  12. "JSON file to a single image dataset, and not to handle\n"
  13. "multiple JSON files to generate a real-use dataset.")
  14. parser = argparse.ArgumentParser()
  15. parser.add_argument('json_file')
  16. parser.add_argument('-o', '--out', default=None)
  17. args = parser.parse_args()
  18. json_file = args.json_file
  19. if args.out is None:
  20. out_dir = osp.basename(json_file).replace('.', '_')
  21. out_dir = osp.join(osp.dirname(json_file), out_dir)
  22. else:
  23. out_dir = args.out
  24. if not osp.exists(out_dir):
  25. os.mkdir(out_dir)
  26. data = json.load(open(json_file))
  27. img = utils.img_b64_to_array(data['imageData'])
  28. lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])
  29. captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
  30. lbl_viz = utils.draw_label(lbl, img, captions)
  31. PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
  32. PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
  33. PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
  34. with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
  35. for lbl_name in lbl_names:
  36. f.write(lbl_name + '\n')
  37. warnings.warn('info.yaml is being replaced by label_names.txt')
  38. info = dict(label_names=lbl_names)
  39. with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
  40. yaml.safe_dump(info, f, default_flow_style=False)
  41. print('Saved to: %s' % out_dir)
  42. if __name__ == '__main__':
  43. main()