123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- #!/usr/bin/env python
- from __future__ import print_function
- import argparse
- import glob
- import json
- import os
- import os.path as osp
- import sys
- import imgviz
- import numpy as np
- import PIL.Image
- import labelme
- def main():
- parser = argparse.ArgumentParser(
- formatter_class=argparse.ArgumentDefaultsHelpFormatter
- )
- parser.add_argument('input_dir', help='input annotated directory')
- parser.add_argument('output_dir', help='output dataset directory')
- parser.add_argument('--labels', help='labels file', required=True)
- parser.add_argument(
- '--noviz', help='no visualization', action='store_true'
- )
- args = parser.parse_args()
- if osp.exists(args.output_dir):
- print('Output directory already exists:', args.output_dir)
- sys.exit(1)
- os.makedirs(args.output_dir)
- os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
- os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
- os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
- if not args.noviz:
- os.makedirs(
- osp.join(args.output_dir, 'SegmentationClassVisualization')
- )
- os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
- os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
- if not args.noviz:
- os.makedirs(
- osp.join(args.output_dir, 'SegmentationObjectVisualization')
- )
- print('Creating dataset:', args.output_dir)
- class_names = []
- class_name_to_id = {}
- for i, line in enumerate(open(args.labels).readlines()):
- class_id = i - 1 # starts with -1
- class_name = line.strip()
- class_name_to_id[class_name] = class_id
- if class_id == -1:
- assert class_name == '__ignore__'
- continue
- elif class_id == 0:
- assert class_name == '_background_'
- class_names.append(class_name)
- class_names = tuple(class_names)
- print('class_names:', class_names)
- out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
- with open(out_class_names_file, 'w') as f:
- f.writelines('\n'.join(class_names))
- print('Saved class_names:', out_class_names_file)
- for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
- print('Generating dataset from:', label_file)
- with open(label_file) as f:
- base = osp.splitext(osp.basename(label_file))[0]
- out_img_file = osp.join(
- args.output_dir, 'JPEGImages', base + '.jpg')
- out_cls_file = osp.join(
- args.output_dir, 'SegmentationClass', base + '.npy')
- out_clsp_file = osp.join(
- args.output_dir, 'SegmentationClassPNG', base + '.png')
- if not args.noviz:
- out_clsv_file = osp.join(
- args.output_dir,
- 'SegmentationClassVisualization',
- base + '.jpg',
- )
- out_ins_file = osp.join(
- args.output_dir, 'SegmentationObject', base + '.npy')
- out_insp_file = osp.join(
- args.output_dir, 'SegmentationObjectPNG', base + '.png')
- if not args.noviz:
- out_insv_file = osp.join(
- args.output_dir,
- 'SegmentationObjectVisualization',
- base + '.jpg',
- )
- data = json.load(f)
- img_file = osp.join(osp.dirname(label_file), data['imagePath'])
- img = np.asarray(PIL.Image.open(img_file))
- PIL.Image.fromarray(img).save(out_img_file)
- cls, ins = labelme.utils.shapes_to_label(
- img_shape=img.shape,
- shapes=data['shapes'],
- label_name_to_value=class_name_to_id,
- type='instance',
- )
- ins[cls == -1] = 0 # ignore it.
- # class label
- labelme.utils.lblsave(out_clsp_file, cls)
- np.save(out_cls_file, cls)
- if not args.noviz:
- clsv = imgviz.label2rgb(
- label=cls,
- img=imgviz.rgb2gray(img),
- label_names=class_names,
- font_size=15,
- loc='rb',
- )
- imgviz.io.imsave(out_clsv_file, clsv)
- # instance label
- labelme.utils.lblsave(out_insp_file, ins)
- np.save(out_ins_file, ins)
- if not args.noviz:
- instance_ids = np.unique(ins)
- instance_names = [str(i) for i in range(max(instance_ids) + 1)]
- insv = imgviz.label2rgb(
- label=ins,
- img=imgviz.rgb2gray(img),
- label_names=instance_names,
- font_size=15,
- loc='rb',
- )
- imgviz.io.imsave(out_insv_file, insv)
- if __name__ == '__main__':
- main()
|