labelme2voc.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. #!/usr/bin/env python
  2. from __future__ import print_function
  3. import argparse
  4. import glob
  5. import json
  6. import os
  7. import os.path as osp
  8. import numpy as np
  9. import PIL.Image
  10. import labelme
  11. def main():
  12. parser = argparse.ArgumentParser(
  13. formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  14. parser.add_argument('labels_file')
  15. parser.add_argument('in_dir', help='input dir with annotated files')
  16. parser.add_argument('out_dir', help='output dataset directory')
  17. args = parser.parse_args()
  18. if osp.exists(args.out_dir):
  19. print('Output directory already exists:', args.out_dir)
  20. quit(1)
  21. os.makedirs(args.out_dir)
  22. os.makedirs(osp.join(args.out_dir, 'JPEGImages'))
  23. os.makedirs(osp.join(args.out_dir, 'SegmentationClass'))
  24. os.makedirs(osp.join(args.out_dir, 'SegmentationClassPNG'))
  25. os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization'))
  26. print('Creating dataset:', args.out_dir)
  27. class_names = []
  28. class_name_to_id = {}
  29. for i, line in enumerate(open(args.labels_file).readlines()):
  30. class_id = i - 1 # starts with -1
  31. class_name = line.strip()
  32. class_name_to_id[class_name] = class_id
  33. if class_id == -1:
  34. assert class_name == '__ignore__'
  35. continue
  36. elif class_id == 0:
  37. assert class_name == '_background_'
  38. class_names.append(class_name)
  39. class_names = tuple(class_names)
  40. print('class_names:', class_names)
  41. out_class_names_file = osp.join(args.out_dir, 'class_names.txt')
  42. with open(out_class_names_file, 'w') as f:
  43. f.writelines('\n'.join(class_names))
  44. print('Saved class_names:', out_class_names_file)
  45. colormap = labelme.utils.label_colormap(255)
  46. for label_file in glob.glob(osp.join(args.in_dir, '*.json')):
  47. print('Generating dataset from:', label_file)
  48. with open(label_file) as f:
  49. base = osp.splitext(osp.basename(label_file))[0]
  50. out_img_file = osp.join(
  51. args.out_dir, 'JPEGImages', base + '.jpg')
  52. out_lbl_file = osp.join(
  53. args.out_dir, 'SegmentationClass', base + '.npy')
  54. out_png_file = osp.join(
  55. args.out_dir, 'SegmentationClassPNG', base + '.png')
  56. out_viz_file = osp.join(
  57. args.out_dir, 'SegmentationClassVisualization', base + '.jpg')
  58. data = json.load(f)
  59. img_file = osp.join(osp.dirname(label_file), data['imagePath'])
  60. img = np.asarray(PIL.Image.open(img_file))
  61. PIL.Image.fromarray(img).save(out_img_file)
  62. lbl = labelme.utils.shapes_to_label(
  63. img_shape=img.shape,
  64. shapes=data['shapes'],
  65. label_name_to_value=class_name_to_id,
  66. )
  67. # Assume label ranses [-1, 254] for int32,
  68. # and [0, 255] for uint8 as VOC.
  69. if lbl.min() >= -1 and lbl.max() < 255:
  70. lbl_pil = PIL.Image.fromarray(lbl.astype(np.uint8), mode='P')
  71. lbl_pil.putpalette((colormap * 255).astype(np.uint8).flatten())
  72. lbl_pil.save(out_png_file)
  73. else:
  74. labelme.logger.warn(
  75. '[%s] Cannot save the pixel-wise class label as PNG, '
  76. 'so please use the npy file.' % label_file
  77. )
  78. np.save(out_lbl_file, lbl)
  79. label_names = ['%d: %s' % (cls_id, cls_name)
  80. for cls_id, cls_name in enumerate(class_names)]
  81. viz = labelme.utils.draw_label(
  82. lbl, img, label_names, colormap=colormap)
  83. PIL.Image.fromarray(viz).save(out_viz_file)
  84. if __name__ == '__main__':
  85. main()