123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- #!/usr/bin/env python
- from __future__ import print_function
- import argparse
- import glob
- import json
- import os
- import os.path as osp
- import numpy as np
- import PIL.Image
- import labelme
- def main():
- parser = argparse.ArgumentParser(
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('labels_file')
- parser.add_argument('in_dir', help='input dir with annotated files')
- parser.add_argument('out_dir', help='output dataset directory')
- args = parser.parse_args()
- if osp.exists(args.out_dir):
- print('Output directory already exists:', args.out_dir)
- quit(1)
- os.makedirs(args.out_dir)
- os.makedirs(osp.join(args.out_dir, 'JPEGImages'))
- os.makedirs(osp.join(args.out_dir, 'SegmentationClass'))
- os.makedirs(osp.join(args.out_dir, 'SegmentationClassPNG'))
- os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization'))
- print('Creating dataset:', args.out_dir)
- class_names = []
- class_name_to_id = {}
- for i, line in enumerate(open(args.labels_file).readlines()):
- class_id = i - 1 # starts with -1
- class_name = line.strip()
- class_name_to_id[class_name] = class_id
- if class_id == -1:
- assert class_name == '__ignore__'
- continue
- elif class_id == 0:
- assert class_name == '_background_'
- class_names.append(class_name)
- class_names = tuple(class_names)
- print('class_names:', class_names)
- out_class_names_file = osp.join(args.out_dir, 'class_names.txt')
- with open(out_class_names_file, 'w') as f:
- f.writelines('\n'.join(class_names))
- print('Saved class_names:', out_class_names_file)
- colormap = labelme.utils.label_colormap(255)
- for label_file in glob.glob(osp.join(args.in_dir, '*.json')):
- print('Generating dataset from:', label_file)
- with open(label_file) as f:
- base = osp.splitext(osp.basename(label_file))[0]
- out_img_file = osp.join(
- args.out_dir, 'JPEGImages', base + '.jpg')
- out_lbl_file = osp.join(
- args.out_dir, 'SegmentationClass', base + '.npy')
- out_png_file = osp.join(
- args.out_dir, 'SegmentationClassPNG', base + '.png')
- out_viz_file = osp.join(
- args.out_dir, 'SegmentationClassVisualization', base + '.jpg')
- data = json.load(f)
- img_file = osp.join(osp.dirname(label_file), data['imagePath'])
- img = np.asarray(PIL.Image.open(img_file))
- PIL.Image.fromarray(img).save(out_img_file)
- lbl = labelme.utils.shapes_to_label(
- img_shape=img.shape,
- shapes=data['shapes'],
- label_name_to_value=class_name_to_id,
- )
- labelme.utils.lblsave(out_png_file, lbl)
- np.save(out_lbl_file, lbl)
- viz = labelme.utils.draw_label(
- lbl, img, class_names, colormap=colormap)
- PIL.Image.fromarray(viz).save(out_viz_file)
- if __name__ == '__main__':
- main()
|