_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', '../_base_/datasets/dsdl.py' ] # dsdl dataset settings. # please visit our platform [OpenDataLab](https://opendatalab.com/) # to downloaded dsdl dataset. data_root = 'data/COCO2017' img_prefix = 'original' train_ann = 'dsdl/set-train/train.yaml' val_ann = 'dsdl/set-val/val.yaml' specific_key_path = dict(ignore_flag='./annotations/*/iscrowd') backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] train_dataloader = dict( dataset=dict( with_polygon=True, specific_key_path=specific_key_path, data_root=data_root, ann_file=train_ann, data_prefix=dict(img_path=img_prefix), filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline, )) val_dataloader = dict( dataset=dict( with_polygon=True, specific_key_path=specific_key_path, data_root=data_root, ann_file=val_ann, data_prefix=dict(img_path=img_prefix), pipeline=test_pipeline, )) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator