_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', ] model = dict(roi_head=dict(bbox_head=dict(num_classes=601))) # dsdl dataset settings # please visit our platform [OpenDataLab](https://opendatalab.com/) # to downloaded dsdl dataset. dataset_type = 'DSDLDetDataset' data_root = 'data/OpenImages' train_ann = 'dsdl/set-train/train.yaml' val_ann = 'dsdl/set-val/val.yaml' specific_key_path = dict( image_level_labels='./image_labels/*/label', Label='./objects/*/label', is_group_of='./objects/*/isgroupof', ) backend_args = dict( backend='petrel', path_mapping=dict({'data/': 's3://open_dataset_original/'})) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1024, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1024, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances', 'image_level_labels')) ] train_dataloader = dict( sampler=dict(type='ClassAwareSampler', num_sample_class=1), dataset=dict( type=dataset_type, with_imagelevel_label=True, with_hierarchy=True, specific_key_path=specific_key_path, data_root=data_root, ann_file=train_ann, filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, with_imagelevel_label=True, with_hierarchy=True, specific_key_path=specific_key_path, data_root=data_root, ann_file=val_ann, test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader default_hooks = dict(logger=dict(type='LoggerHook', interval=1000), ) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=3, val_interval=1) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[1, 2], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) val_evaluator = dict( type='OpenImagesMetric', iou_thrs=0.5, ioa_thrs=0.5, use_group_of=True, get_supercategory=True) test_evaluator = val_evaluator