_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', # '../_base_/datasets/dsdl.py' ] # model setting model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) # dsdl dataset settings # please visit our platform [OpenDataLab](https://opendatalab.com/) # to downloaded dsdl dataset. dataset_type = 'DSDLDetDataset' data_root_07 = 'data/VOC07-det' data_root_12 = 'data/VOC12-det' img_prefix = 'original' train_ann = 'dsdl/set-train/train.yaml' val_ann = 'dsdl/set-val/val.yaml' test_ann = 'dsdl/set-test/test.yaml' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] specific_key_path = dict(ignore_flag='./objects/*/difficult', ) train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', datasets=[ dict( type=dataset_type, specific_key_path=specific_key_path, data_root=data_root_07, ann_file=train_ann, data_prefix=dict(img_path=img_prefix), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, specific_key_path=specific_key_path, data_root=data_root_07, ann_file=val_ann, data_prefix=dict(img_path=img_prefix), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, specific_key_path=specific_key_path, data_root=data_root_12, ann_file=train_ann, data_prefix=dict(img_path=img_prefix), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, specific_key_path=specific_key_path, data_root=data_root_12, ann_file=val_ann, data_prefix=dict(img_path=img_prefix), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), ]))) val_dataloader = dict( dataset=dict( type=dataset_type, specific_key_path=specific_key_path, data_root=data_root_07, ann_file=test_ann, test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict(type='CocoMetric', metric='bbox') # val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator # training schedule, voc dataset is repeated 3 times, in # `_base_/datasets/voc0712.py`, so the actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)