_base_ = 'yolact_r50_1xb8-55e_coco.py' # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(lr=8e-3), clip_grad=dict(max_norm=35, norm_type=2)) # learning rate max_epochs = 55 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 42, 49, 52], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)