auto_scale_lr = dict(base_batch_size=32) backend_args = None data_root = '../../../media/tricolops/T7/Dataset/coco_format_bd/' dataset_type = 'CocoDataset' default_hooks = dict( checkpoint=dict(interval=10, type='CheckpointHook'), logger=dict(interval=50, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict( draw=True, test_out_dir='res', type='DetVisualizationHook')) default_scope = 'mmdet' env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) launcher = 'none' load_from = 'work_dirs/deformable-detr_r50_16xb2-50e_coco/epoch_470.pth' log_level = 'INFO' log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50) max_epochs = 500 metainfo = dict( classes=('barcode', ), palette=[ ( 220, 20, 60, ), ]) model = dict( as_two_stage=False, backbone=dict( depth=50, frozen_stages=1, init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'), norm_cfg=dict(requires_grad=False, type='BN'), norm_eval=True, num_stages=4, out_indices=( 1, 2, 3, ), style='pytorch', type='ResNet'), bbox_head=dict( loss_bbox=dict(loss_weight=5.0, type='L1Loss'), loss_cls=dict( alpha=0.25, gamma=2.0, loss_weight=2.0, type='FocalLoss', use_sigmoid=True), loss_iou=dict(loss_weight=2.0, type='GIoULoss'), num_classes=1, sync_cls_avg_factor=True, type='DeformableDETRHead'), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_size_divisor=1, std=[ 58.395, 57.12, 57.375, ], type='DetDataPreprocessor'), decoder=dict( layer_cfg=dict( cross_attn_cfg=dict(batch_first=True, embed_dims=256), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.1), self_attn_cfg=dict( batch_first=True, dropout=0.1, embed_dims=256, num_heads=8)), num_layers=6, post_norm_cfg=None, return_intermediate=True), encoder=dict( layer_cfg=dict( ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.1), self_attn_cfg=dict(batch_first=True, embed_dims=256)), num_layers=6), neck=dict( act_cfg=None, in_channels=[ 512, 1024, 2048, ], kernel_size=1, norm_cfg=dict(num_groups=32, type='GN'), num_outs=4, out_channels=256, type='ChannelMapper'), num_feature_levels=4, num_queries=300, positional_encoding=dict(normalize=True, num_feats=128, offset=-0.5), test_cfg=dict(max_per_img=100), train_cfg=dict( assigner=dict( match_costs=[ dict(type='FocalLossCost', weight=2.0), dict(box_format='xywh', type='BBoxL1Cost', weight=5.0), dict(iou_mode='giou', type='IoUCost', weight=2.0), ], type='HungarianAssigner')), type='DeformableDETR', with_box_refine=False) optim_wrapper = dict( clip_grad=dict(max_norm=10, norm_type=2), optimizer=dict(lr=0.0002, type='AdamW', weight_decay=0.0001), paramwise_cfg=dict( custom_keys=dict( backbone=dict(lr_mult=0.1), reference_points=dict(lr_mult=0.1), sampling_offsets=dict(lr_mult=0.1))), type='OptimWrapper') param_scheduler = [ dict( begin=0, by_epoch=True, end=500, gamma=0.1, milestones=[ 40, ], type='MultiStepLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( ann_file='Val/Val.json', backend_args=None, data_prefix=dict(img='Val/'), data_root='../../../media/tricolops/T7/Dataset/coco_format_bd/', metainfo=dict(classes=('barcode', ), palette=[ ( 220, 20, 60, ), ]), pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 640, 640, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=True, type='CocoDataset'), drop_last=False, num_workers=2, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( ann_file='../../../media/tricolops/T7/Dataset/coco_format_bd/Val/Val.json', backend_args=None, format_only=False, metric='bbox', type='CocoMetric') test_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 640, 640, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ] train_cfg = dict(max_epochs=500, type='EpochBasedTrainLoop', val_interval=10) train_dataloader = dict( batch_sampler=dict(type='AspectRatioBatchSampler'), batch_size=4, dataset=dict( ann_file='Train/Train.json', backend_args=None, data_prefix=dict(img='Train/'), data_root='../../../media/tricolops/T7/Dataset/coco_format_bd/', filter_cfg=dict(filter_empty_gt=False, min_size=32), metainfo=dict(classes=('barcode', ), palette=[ ( 220, 20, 60, ), ]), pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(prob=0.5, type='RandomFlip'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 640, 640, ), type='RandomResize'), dict(crop_size=( 640, 640, ), type='RandomCrop'), dict(type='PackDetInputs'), ], type='CocoDataset'), num_workers=2, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) train_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(prob=0.5, type='RandomFlip'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 640, 640, ), type='RandomResize'), dict(crop_size=( 640, 640, ), type='RandomCrop'), dict(type='PackDetInputs'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( ann_file='Val/Val.json', backend_args=None, data_prefix=dict(img='Val/'), data_root='../../../media/tricolops/T7/Dataset/coco_format_bd/', metainfo=dict(classes=('barcode', ), palette=[ ( 220, 20, 60, ), ]), pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 640, 640, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=True, type='CocoDataset'), drop_last=False, num_workers=2, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( ann_file='../../../media/tricolops/T7/Dataset/coco_format_bd/Val/Val.json', backend_args=None, format_only=False, metric='bbox', type='CocoMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='DetLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = 'result'