_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='FasterRCNN', backbone=dict( init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), rpn_head=dict( type='RPNHead', anchor_generator=dict( type='LegacyAnchorGenerator', center_offset=0.5, scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn_proposal=dict(max_per_img=2000), rcnn=dict(assigner=dict(match_low_quality=True))))