_base_ = [ '../_base_/datasets/mot_challenge_reid.py', '../_base_/default_runtime.py' ] model = dict( type='BaseReID', data_preprocessor=dict( type='ReIDDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), backbone=dict( type='mmpretrain.ResNet', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling', kernel_size=(8, 4), stride=1), head=dict( type='LinearReIDHead', num_fcs=1, in_channels=2048, fc_channels=1024, out_channels=128, num_classes=380, loss_cls=dict(type='mmpretrain.CrossEntropyLoss', loss_weight=1.0), loss_triplet=dict(type='TripletLoss', margin=0.3, loss_weight=1.0), norm_cfg=dict(type='BN1d'), act_cfg=dict(type='ReLU')), init_cfg=dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth' # noqa: E501 )) # optimizer optim_wrapper = dict( type='OptimWrapper', clip_grad=None, optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 1000, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=6, by_epoch=True, milestones=[5], gamma=0.1) ] # train, val, test setting train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')