_base_ = ['./yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py'] data_root = 'data/MOT20/' img_scale = (1600, 896) # width, height # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict(type='BatchSyncRandomResize', random_size_range=(640, 1152)) ])) train_pipeline = [ dict( type='Mosaic', img_scale=img_scale, pad_val=114.0, bbox_clip_border=True), dict( type='RandomAffine', scaling_ratio_range=(0.1, 2), border=(-img_scale[0] // 2, -img_scale[1] // 2), bbox_clip_border=True), dict( type='MixUp', img_scale=img_scale, ratio_range=(0.8, 1.6), pad_val=114.0, bbox_clip_border=True), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict( type='Resize', scale=img_scale, keep_ratio=True, clip_object_border=True), dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='MultiImageMixDataset', dataset=dict( type='ConcatDataset', datasets=[ dict( type='CocoDataset', data_root=data_root, ann_file='annotations/train_cocoformat.json', data_prefix=dict(img='train'), filter_cfg=dict(filter_empty_gt=True, min_size=32), metainfo=dict(classes=('pedestrian', )), pipeline=[ dict( type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), ]), dict( type='CocoDataset', data_root='data/crowdhuman', ann_file='annotations/crowdhuman_train.json', data_prefix=dict(img='train'), filter_cfg=dict(filter_empty_gt=True, min_size=32), metainfo=dict(classes=('pedestrian', )), pipeline=[ dict( type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), ]), dict( type='CocoDataset', data_root='data/crowdhuman', ann_file='annotations/crowdhuman_val.json', data_prefix=dict(img='val'), filter_cfg=dict(filter_empty_gt=True, min_size=32), metainfo=dict(classes=('pedestrian', )), pipeline=[ dict( type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), ]), ]), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( data_root='data/MOT17', ann_file='annotations/train_cocoformat.json')) test_dataloader = val_dataloader # evaluator val_evaluator = dict(ann_file='data/MOT17/annotations/train_cocoformat.json') test_evaluator = val_evaluator