_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/wider_face.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_2x.py' ] model = dict(bbox_head=dict(num_classes=1)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(300, 300), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='Resize', scale=(300, 300), keep_ratio=False), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] dataset_type = 'WIDERFaceDataset' data_root = 'data/WIDERFace/' train_dataloader = dict( batch_size=32, num_workers=8, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict(type='MultiStepLR', by_epoch=True, milestones=[16, 20], gamma=0.1) ] # optimizer optim_wrapper = dict( optimizer=dict(lr=0.012, momentum=0.9, weight_decay=5e-4), clip_grad=dict(max_norm=35, norm_type=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (32 samples per GPU) auto_scale_lr = dict(base_batch_size=256)