_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/default_runtime.py' ] img_norm_cfg = dict( mean=[123.68, 116.78, 103.94], std=[58.40, 57.12, 57.38], to_rgb=True) # model settings input_size = 550 model = dict( type='YOLACT', data_preprocessor=dict( type='DetDataPreprocessor', mean=img_norm_cfg['mean'], std=img_norm_cfg['std'], bgr_to_rgb=img_norm_cfg['to_rgb'], pad_mask=True), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, # do not freeze stem norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, # update the statistics of bn zero_init_residual=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5, upsample_cfg=dict(mode='bilinear')), bbox_head=dict( type='YOLACTHead', num_classes=80, in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=3, scales_per_octave=1, base_sizes=[8, 16, 32, 64, 128], ratios=[0.5, 1.0, 2.0], strides=[550.0 / x for x in [69, 35, 18, 9, 5]], centers=[(550 * 0.5 / x, 550 * 0.5 / x) for x in [69, 35, 18, 9, 5]]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, reduction='none', loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5), num_head_convs=1, num_protos=32, use_ohem=True), mask_head=dict( type='YOLACTProtonet', in_channels=256, num_protos=32, num_classes=80, max_masks_to_train=100, loss_mask_weight=6.125, with_seg_branch=True, loss_segm=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), # YOLACT should use PseudoSampler # smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, mask_thr=0.5, iou_thr=0.5, top_k=200, max_per_img=100, mask_thr_binary=0.5)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(4.0, 4.0)), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=4, batch_sampler=None, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader max_epochs = 55 # training schedule for 55e train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 42, 49, 52], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] env_cfg = dict(cudnn_benchmark=True) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (1 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=8)