_base_ = './yolof_r50-c5_8xb8-1x_coco.py' # We implemented the iter-based config according to the source code. # COCO dataset has 117266 images after filtering. We use 8 gpu and # 8 batch size training, so 22500 is equivalent to # 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch, # 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large, # the iter-based and epoch-based setting have about 0.2 difference on # the mAP evaluation value. train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=22500, val_interval=4500) # learning rate policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=22500, by_epoch=False, milestones=[15000, 20000], gamma=0.1) ] train_dataloader = dict(sampler=dict(type='InfiniteSampler')) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=2500)) log_processor = dict(by_epoch=False)