_base_ = [ '_base_/xdecoder-tiny_open-vocab-instance.py', 'mmdet::_base_/datasets/coco_instance.py' ] test_pipeline = [ dict( type='LoadImageFromFile', imdecode_backend='pillow', backend_args=_base_.backend_args), dict( type='ResizeShortestEdge', scale=800, max_size=1333, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader val_evaluator = dict(metric='segm') test_evaluator = val_evaluator train_dataloader = None