_base_ = [ '_base_/xdecoder-tiny_open-vocab-panoptic.py', 'mmdet::_base_/datasets/ade20k_panoptic.py' ] model = dict(test_cfg=dict(mask_thr=0.4)) test_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='Resize', scale=(2560, 640), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=_base_.backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'stuff_text')) ] x_decoder_ade20k_thing_classes = ( 'bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain', 'chair', 'car', 'painting', 'sofa', 'shelf', 'mirror', 'armchair', 'seat', 'fence', 'desk', 'wardrobe', 'lamp', 'tub', 'rail', 'cushion', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sink', 'fireplace', 'refrigerator', 'stairs', 'case', 'pool table', 'pillow', 'screen door', 'bookcase', 'coffee table', 'toilet', 'flower', 'book', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier', 'awning', 'street lamp', 'booth', 'tv', 'airplane', 'clothes', 'pole', 'bannister', 'ottoman', 'bottle', 'van', 'ship', 'fountain', 'washer', 'plaything', 'stool', 'barrel', 'basket', 'bag', 'minibike', 'oven', 'ball', 'food', 'step', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'dishwasher', 'screen', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate', 'monitor', 'bulletin board', 'radiator', 'glass', 'clock', 'flag') x_decoder_ade20k_stuff_classes = ( 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'grass', 'sidewalk', 'earth', 'mountain', 'plant', 'water', 'house', 'sea', 'rug', 'field', 'rock', 'base', 'sand', 'skyscraper', 'grandstand', 'path', 'runway', 'stairway', 'river', 'bridge', 'blind', 'hill', 'bar', 'hovel', 'tower', 'dirt track', 'land', 'escalator', 'buffet', 'poster', 'stage', 'conveyer belt', 'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank', 'lake', 'blanket', 'pier', 'crt screen', 'shower') val_dataloader = dict( dataset=dict( metainfo=dict( thing_classes=x_decoder_ade20k_thing_classes, stuff_classes=x_decoder_ade20k_stuff_classes), return_classes=True, pipeline=test_pipeline)) test_dataloader = val_dataloader