# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import PISARetinaHead class TestPISARetinaHead(TestCase): def test_pisa_reitnanet_head_loss(self): """Tests pisa retinanet head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2), sampler=dict(type='PseudoSampler'), allowed_border=-1, pos_weight=-1, debug=False)) pisa_retinanet_head = PISARetinaHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0), train_cfg=cfg) # pisa retina head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in pisa_retinanet_head.prior_generator.strides) cls_scores, bbox_preds = pisa_retinanet_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = pisa_retinanet_head.loss_by_feat( cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] empty_carl_loss = empty_gt_losses['loss_carl'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_carl_loss.item(), 0, 'there should be no carl loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = pisa_retinanet_head.loss_by_feat( cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] onegt_carl_loss = one_gt_losses['loss_carl'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_carl_loss.item(), 0, 'carl loss should be non-zero')