# dataset settings dataset_type = 'CocoDataset' data_root = 'data/MOT17/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args, to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(1088, 1088), ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion'), dict(type='RandomCrop', crop_size=(1088, 1088), bbox_clip_border=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1088, 1088), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/half-val_cocoformat.json', metric='bbox', format_only=False) test_evaluator = val_evaluator