# dataset settings dataset_type = 'ReIDDataset' data_root = 'data/MOT17/' backend_args = None # data pipeline train_pipeline = [ dict( type='TransformBroadcaster', share_random_params=False, transforms=[ dict( type='LoadImageFromFile', backend_args=backend_args, to_float32=True), dict( type='Resize', scale=(128, 256), keep_ratio=False, clip_object_border=False), dict(type='RandomFlip', prob=0.5, direction='horizontal'), ]), dict(type='PackReIDInputs', meta_keys=('flip', 'flip_direction')) ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args, to_float32=True), dict(type='Resize', scale=(128, 256), keep_ratio=False), dict(type='PackReIDInputs') ] # dataloader train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, triplet_sampler=dict(num_ids=8, ins_per_id=4), data_prefix=dict(img_path='reid/imgs'), ann_file='reid/meta/train_80.txt', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, triplet_sampler=None, data_prefix=dict(img_path='reid/imgs'), ann_file='reid/meta/val_20.txt', pipeline=test_pipeline)) test_dataloader = val_dataloader # evaluator val_evaluator = dict(type='ReIDMetrics', metric=['mAP', 'CMC']) test_evaluator = val_evaluator