_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='CascadeRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5), bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0])), roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False)), bbox_head=[ dict( type='Shared2FCBBoxHead', reg_class_agnostic=True, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2])), dict( type='Shared2FCBBoxHead', reg_class_agnostic=True, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1])), dict( type='Shared2FCBBoxHead', reg_class_agnostic=True, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067])), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=14, sampling_ratio=2, aligned=False))))