_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

model = dict(
    type='FasterRCNN',
    backbone=dict(
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    rpn_head=dict(
        type='RPNHead',
        anchor_generator=dict(
            type='LegacyAnchorGenerator',
            center_offset=0.5,
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
    roi_head=dict(
        type='StandardRoIHead',
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(
                type='RoIAlign',
                output_size=7,
                sampling_ratio=2,
                aligned=False),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=dict(
            bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
    # model training and testing settings
    train_cfg=dict(
        rpn_proposal=dict(max_per_img=2000),
        rcnn=dict(assigner=dict(match_low_quality=True))))