_base_ = ['./mask2former_r50_8xb2-8e_youtubevis2021.py'] depths = [2, 2, 18, 2] model = dict( type='Mask2FormerVideo', backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, depths=depths, num_heads=[6, 12, 24, 48], window_size=12, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=None), track_head=dict( type='Mask2FormerTrackHead', in_channels=[192, 384, 768, 1536], num_queries=200), init_cfg=dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmdetection/v3.0/mask2former/' 'mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic/' 'mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic_' '20220407_104949-82f8d28d.pth')) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))