_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b4.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optim_wrapper = dict( optimizer=dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001)) # dataset settings train_dataloader = dict(batch_size=1, num_workers=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)