# Copyright (c) OpenMMLab. All rights reserved. from mmcv.ops import RoIAlign, nms from torch.nn import BatchNorm2d from mmdet.models.backbones.resnet import ResNet from mmdet.models.data_preprocessors.data_preprocessor import \ DetDataPreprocessor from mmdet.models.dense_heads.rpn_head import RPNHead from mmdet.models.detectors.faster_rcnn import FasterRCNN from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss from mmdet.models.losses.smooth_l1_loss import L1Loss from mmdet.models.necks.fpn import FPN from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \ Shared2FCBBoxHead from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \ SingleRoIExtractor from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \ DeltaXYWHBBoxCoder from mmdet.models.task_modules.prior_generators.anchor_generator import \ AnchorGenerator from mmdet.models.task_modules.samplers.random_sampler import RandomSampler # model settings model = dict( type=FasterRCNN, data_preprocessor=dict( type=DetDataPreprocessor, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type=ResNet, depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type=BatchNorm2d, requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type=FPN, in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type=RPNHead, in_channels=256, feat_channels=256, anchor_generator=dict( type=AnchorGenerator, scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type=DeltaXYWHBBoxCoder, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type=L1Loss, loss_weight=1.0)), roi_head=dict( type=StandardRoIHead, bbox_roi_extractor=dict( type=SingleRoIExtractor, roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type=Shared2FCBBoxHead, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type=DeltaXYWHBBoxCoder, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type=L1Loss, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type=MaxIoUAssigner, pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type=RandomSampler, num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type=nms, iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type=MaxIoUAssigner, pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type=RandomSampler, num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type=nms, iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type=nms, iou_threshold=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) ))