# Copyright (c) OpenMMLab. All rights reserved. from mmcv.ops import nms from torch.nn import BatchNorm2d from mmdet.models import (FPN, DetDataPreprocessor, FocalLoss, L1Loss, ResNet, RetinaHead, RetinaNet) from mmdet.models.task_modules import (AnchorGenerator, DeltaXYWHBBoxCoder, MaxIoUAssigner, PseudoSampler) # model settings model = dict( type=RetinaNet, data_preprocessor=dict( type=DetDataPreprocessor, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type=ResNet, depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type=BatchNorm2d, requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type=FPN, in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5), bbox_head=dict( type=RetinaHead, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type=AnchorGenerator, octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type=DeltaXYWHBBoxCoder, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type=FocalLoss, use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type=L1Loss, loss_weight=1.0)), # model training and testing settings train_cfg=dict( assigner=dict( type=MaxIoUAssigner, pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), sampler=dict( type=PseudoSampler), # Focal loss should use PseudoSampler allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type=nms, iou_threshold=0.5), max_per_img=100))