## Description
This is an implementation of [DiffusionDet](https://github.com/ShoufaChen/DiffusionDet) based on [MMDetection](https://github.com/open-mmlab/mmdetection/tree/main), [MMCV](https://github.com/open-mmlab/mmcv), and [MMEngine](https://github.com/open-mmlab/mmengine).
## Usage
### Comparison of results
1. Download the [DiffusionDet released model](https://github.com/ShoufaChen/DiffusionDet#models).
2. Convert model from DiffusionDet version to MMDetection version. We give a [sample script](model_converters/diffusiondet_resnet_to_mmdet.py)
to convert `DiffusionDet-resnet50` model. Users can download the corresponding models from [here](https://github.com/ShoufaChen/DiffusionDet/releases/download/v0.1/diffdet_coco_res50.pth).
```shell
python projects/DiffusionDet/model_converters/diffusiondet_resnet_to_mmdet.py ${DiffusionDet ckpt path} ${MMDetectron ckpt path}
```
3. Testing the model in MMDetection.
```shell
python tools/test.py projects/DiffusionDet/configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py ${CHECKPOINT_PATH}
```
**Note:** During inference time, DiffusionDet will randomly generate noisy boxes,
which may affect the AP results. If users want to get the same result every inference time, setting seed is a good way.
We give a table to compare the inference results on `ResNet50-500-proposals` between DiffusionDet and MMDetection.
| Config | Step | AP |
| :---------------------------------------------------------------------------------------------------------------------: | :--: | :-------: |
| [DiffusionDet](https://github.com/ShoufaChen/DiffusionDet/blob/main/configs/diffdet.coco.res50.yaml) (released results) | 1 | 45.5 |
| [DiffusionDet](https://github.com/ShoufaChen/DiffusionDet/blob/main/configs/diffdet.coco.res50.yaml) (seed=0) | 1 | 45.66 |
| [MMDetection](configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py) (seed=0) | 1 | 45.7 |
| [MMDetection](configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py) (random seed) | 1 | 45.6~45.8 |
| [DiffusionDet](https://github.com/ShoufaChen/DiffusionDet/blob/main/configs/diffdet.coco.res50.yaml) (released results) | 4 | 46.1 |
| [DiffusionDet](https://github.com/ShoufaChen/DiffusionDet/blob/main/configs/diffdet.coco.res50.yaml) (seed=0) | 4 | 46.38 |
| [MMDetection](configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py) (seed=0) | 4 | 46.4 |
| [MMDetection](configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py) (random seed) | 4 | 46.2~46.4 |
- `seed=0` means hard set seed before generating random boxes.
```python
# hard set seed=0 before generating random boxes
seed = 0
random.seed(seed)
torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
...
noise_bboxes_raw = torch.randn(
(self.num_proposals, 4),
device=device)
...
```
- `random seed` means do not hard set seed before generating random boxes.
### Training commands
In MMDetection's root directory, run the following command to train the model:
```bash
python tools/train.py projects/DiffusionDet/configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py
```
For multi-gpu training, run:
```bash
python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=${NUM_GPUS} --master_port=29506 --master_addr="127.0.0.1" tools/train.py projects/DiffusionDet/configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py
```
### Testing commands
In MMDetection's root directory, run the following command to test the model:
```bash
# for 1 step inference
# test command
python tools/test.py projects/DiffusionDet/configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py ${CHECKPOINT_PATH}
# for 4 steps inference
# test command
python tools/test.py projects/DiffusionDet/configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py ${CHECKPOINT_PATH} --cfg-options model.bbox_head.sampling_timesteps=4
```
**Note:** There is no difference between 1 step or 4 steps (or other multi-step) during training. Users can set different steps during inference through `--cfg-options model.bbox_head.sampling_timesteps=${STEPS}`, but larger `sampling_timesteps` will affect the inference time.
## Results
Here we provide the baseline version of DiffusionDet with ResNet50 backbone.
To find more variants, please visit the [official model zoo](https://github.com/ShoufaChen/DiffusionDet#models).
| Backbone | Style | Lr schd | AP (Step=1) | AP (Step=4) | Config | Download |
| :------: | :-----: | :-----: | :---------: | :---------: | :----------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| R-50 | PyTorch | 450k | 44.5 | 46.2 | [config](./configs/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/diffusiondet/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco_20230215_090925-7d6ed504.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/diffusiondet/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco/diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco_20230215_090925.log.json) |
## License
DiffusionDet is under the [CC-BY-NC 4.0 license](https://github.com/ShoufaChen/DiffusionDet/blob/main/LICENSE). Users should be careful about adopting these features in any commercial matters.
## Citation
If you find DiffusionDet is useful in your research or applications, please consider giving a star 🌟 to the [official repository](https://github.com/ShoufaChen/DiffusionDet) and citing DiffusionDet by the following BibTeX entry.
```BibTeX
@article{chen2022diffusiondet,
title={DiffusionDet: Diffusion Model for Object Detection},
author={Chen, Shoufa and Sun, Peize and Song, Yibing and Luo, Ping},
journal={arXiv preprint arXiv:2211.09788},
year={2022}
}
```
## Checklist
- [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`.
- [x] Finish the code
- [x] Basic docstrings & proper citation
- [x] Test-time correctness
- [x] A full README
- [x] Milestone 2: Indicates a successful model implementation.
- [x] Training-time correctness
- [ ] Milestone 3: Good to be a part of our core package!
- [ ] Type hints and docstrings
- [ ] Unit tests
- [ ] Code polishing
- [ ] Metafile.yml
- [ ] Move your modules into the core package following the codebase's file hierarchy structure.
- [ ] Refactor your modules into the core package following the codebase's file hierarchy structure.