_base_ = [ '_base_/xdecoder-tiny_open-vocab-instance.py', 'mmdet::_base_/datasets/ade20k_instance.py' ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='Resize', scale=(2560, 640), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text')) ] val_dataloader = dict( dataset=dict(return_classes=True, pipeline=test_pipeline)) test_dataloader = val_dataloader test_evaluator = dict(metric=['segm'])