_base_ = '_base_/xdecoder-tiny_open-vocab-semseg.py' dataset_type = 'CocoSegDataset' data_root = 'data/coco/' test_pipeline = [ dict( type='LoadImageFromFile', imdecode_backend='pillow', backend_args=None), dict( type='ResizeShortestEdge', scale=800, max_size=1333, backend='pillow'), dict( type='LoadAnnotations', with_bbox=False, with_label=False, with_seg=True), dict( type='PackDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text')) ] x_decoder_coco2017_semseg_classes = ( 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other', 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', 'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged', 'food-other-merged', 'building-other-merged', 'rock-merged', 'wall-other-merged', 'rug-merged') val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, metainfo=dict(classes=x_decoder_coco2017_semseg_classes), use_label_map=False, data_prefix=dict( img_path='val2017/', seg_map_path='annotations/panoptic_semseg_val2017/'), pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader val_evaluator = dict(type='SemSegMetric', iou_metrics=['mIoU']) test_evaluator = val_evaluator